Active Filters

  • (-) Keywords = graphene
  • (-) Keywords ≠ atomically thin
Search Results 1 - 20 of 30
Select Page
Nanoscale electronic transport at graphene/pentacene van der Waals interface
Daher Mansour, M., Oswald, J., Beretta, D., Stiefel, M., Furrer, R., Calame, M., & Vuillaume, D. (2023). Nanoscale electronic transport at graphene/pentacene van der Waals interface. Nanoscale, 15(20), 9203-9213. https://doi.org/10.1039/D2NR06682C
Conformal integration of an inkjet‐printed PbS QDs‐graphene IR photodetector on a polymer optical fiber
Kara, G., Bolat, S., Sharma, K., Grotevent, M. J., Dirin, D. N., Bachmann, D., … Shorubalko, I. (2023). Conformal integration of an inkjet‐printed PbS QDs‐graphene IR photodetector on a polymer optical fiber. Advanced Materials Technologies, 8(9), 2201922 (11 pp.). https://doi.org/10.1002/admt.202201922
<em>In situ </em>observation of chemically induced protein denaturation at solvated interfaces
Nirmalraj, P. N., Rossell, M. D., Dachraoui, W., Thompson, D., & Mayer, M. (2023). In situ observation of chemically induced protein denaturation at solvated interfaces. ACS Applied Materials and Interfaces, 15(41), 48015-48026. https://doi.org/10.1021/acsami.3c10510
Field and thermal emission limited charge injection in Au-C60-graphene van der Waals vertical heterostructures for organic electronics
Oswald, J., Beretta, D., Stiefel, M., Furrer, R., Lohde, S., Vuillaume, D., & Calame, M. (2023). Field and thermal emission limited charge injection in Au-C60-graphene van der Waals vertical heterostructures for organic electronics. ACS Applied Nano Materials, 6(11), 9444-9452. https://doi.org/10.1021/acsanm.3c01090
The effect of C60 and Pentacene adsorbates on the electrical properties of CVD graphene on SiO<sub>2</sub>
Oswald, J., Beretta, D., Stiefel, M., Furrer, R., Vuillaume, D., & Calame, M. (2023). The effect of C60 and Pentacene adsorbates on the electrical properties of CVD graphene on SiO2. Nanomaterials, 13(6), 1134 (14 pp.). https://doi.org/10.3390/nano13061134
Release and toxicity assessment of carbon nanomaterial reinforced polymers during the use and end-of-life phases: a comparative review
Romeo, D., Clement, P., & Wick, P. (2023). Release and toxicity assessment of carbon nanomaterial reinforced polymers during the use and end-of-life phases: a comparative review. NanoImpact, 31, 100477 (13 pp.). https://doi.org/10.1016/j.impact.2023.100477
Determining the number of graphene nanoribbons in dual-gate field-effect transistors
Zhang, J., Borin Barin, G., Furrer, R., Du, C. Z., Wang, X. Y., Müllen, K., … Perrin, M. L. (2023). Determining the number of graphene nanoribbons in dual-gate field-effect transistors. Nano Letters, 23(18), 8474-8480. https://doi.org/10.1021/acs.nanolett.3c01931
Micro‐cup architecture for printing and coating asymmetric 2D‐material‐based solid‐state supercapacitors
Zhang, C. (J. ), Schneider, R., Jafarpour, M., Nüesch, F., Abdolhosseinzadeh, S., & Heier, J. (2023). Micro‐cup architecture for printing and coating asymmetric 2D‐material‐based solid‐state supercapacitors. Small, 19(32), 2300357 (10 pp.). https://doi.org/10.1002/smll.202300357
High-quality graphene using boudouard reaction
Grebenko, A. K., Krasnikov, D. V., Bubis, A. V., Stolyarov, V. S., Vyalikh, D. V., Makarova, A. A., … Nasibulin, A. G. (2022). High-quality graphene using boudouard reaction. Advanced Science, 9(12), 2200217 (12 pp.). https://doi.org/10.1002/advs.202200217
Co<sup>2+</sup>, Fe<sup>2+</sup>, and Ni<sup>2+</sup>: modifiers for photocatalytic deposition of highly active Pt on graphene-based supports
Haghmoradi, N., Sarı, Z. T., Kırlıoǧlu, A. C., Yarar Kaplan, B., Dedeoǧlu, B., Zahedimaram, P., … Gürsel, S. A. (2022). Co2+, Fe2+, and Ni2+: modifiers for photocatalytic deposition of highly active Pt on graphene-based supports. ACS Applied Energy Materials, 5(11), 13939-13951. https://doi.org/10.1021/acsaem.2c02569
Prospective dynamic and probabilistic material flow analysis of graphene-based materials in Europe from 2004 to 2030
Hong, H., Part, F., & Nowack, B. (2022). Prospective dynamic and probabilistic material flow analysis of graphene-based materials in Europe from 2004 to 2030. Environmental Science and Technology, 56(19), 13798-13809. https://doi.org/10.1021/acs.est.2c04002
Functional ink formulation for printing and coating of graphene and other 2D materials: challenges and solutions
Jafarpour, M., Nüesch, F., Heier, J., & Abdolhosseinzadeh, S. (2022). Functional ink formulation for printing and coating of graphene and other 2D materials: challenges and solutions. Small Science, 2(11), 2200040 (33 pp.). https://doi.org/10.1002/smsc.202200040
Single nanosized graphene/TiO<sub>x</sub> multi-shells on TiO<sub>2</sub> core via rapid-concomitant reaction pathway on metal oxide/polymer interface
Kato, K., Xin, Y., Vaucher, S., & Shirai, T. (2022). Single nanosized graphene/TiOx multi-shells on TiO2 core via rapid-concomitant reaction pathway on metal oxide/polymer interface. Scripta Materialia, 208, 114358 (6 pp.). https://doi.org/10.1016/j.scriptamat.2021.114358
Charge transport across Au-P3HT-graphene van der Waals vertical heterostructures
Oswald, J., Beretta, D., Stiefel, M., Furrer, R., Romio, A., Daher Mansour, M., … Calame, M. (2022). Charge transport across Au-P3HT-graphene van der Waals vertical heterostructures. ACS Applied Materials and Interfaces, 14(42), 48240-48249. https://doi.org/10.1021/acsami.2c13148
Towards a more environmentally sustainable production of graphene-based materials. Building on current knowledge to offer recommendations
Beloin‑Saint‑Pierre, D., & Hischier, R. (2021). Towards a more environmentally sustainable production of graphene-based materials. Building on current knowledge to offer recommendations. International Journal of Life Cycle Assessment, 26, 327-343. https://doi.org/10.1007/s11367-020-01864-z
Unbalanced 2D chiral crystallization of pentahelicene propellers and their planarization into nanographenes
Voigt, J., Roy, M., Baljozović, M., Wäckerlin, C., Coquerel, Y., Gingras, M., & Ernst, K. H. (2021). Unbalanced 2D chiral crystallization of pentahelicene propellers and their planarization into nanographenes. Chemistry: A European Journal, 27(40), 10251-10254. https://doi.org/10.1002/chem.202101223
Nanoprinted quantum dot–graphene photodetectors
Grotevent, M. J., Hail, C. U., Yakunin, S., Dirin, D. N., Thodkar, K., Borin Barin, G., … Shorubalko, I. (2019). Nanoprinted quantum dot–graphene photodetectors. Advanced Optical Materials, 7(11), 1900019 (7 pp.). https://doi.org/10.1002/adom.201900019
Graphene grown from flat and bowl shaped polycyclic aromatic hydrocarbons on Cu(111)
Li, J., Lampart, S., Siegel, J. S., Ernst, K. H., & Wäckerlin, C. (2019). Graphene grown from flat and bowl shaped polycyclic aromatic hydrocarbons on Cu(111). ChemPhysChem, 20(18), 2354-2359. https://doi.org/10.1002/cphc.201900291
Conducting and lithiophilic MXene/graphene frameworks for high-capacity, dendrite-free lithium-metal anodes
Shi, H., Zhang, C. (J. ), Lu, P., Dong, Y., Wen, P., & Wu, Z. S. (2019). Conducting and lithiophilic MXene/graphene frameworks for high-capacity, dendrite-free lithium-metal anodes. ACS Nano, 13(12), 14308-14318. https://doi.org/10.1021/acsnano.9b07710
Safety assessment of graphene-based materials: focus on human health and the environment
Fadeel, B., Bussy, C., Merino, S., Vázquez, E., Flahaut, E., Mouchet, F., … Bianco, A. (2018). Safety assessment of graphene-based materials: focus on human health and the environment. ACS Nano, 12(11), 10582-10620. https://doi.org/10.1021/acsnano.8b04758