| <i>In situ</i> ambient pressure XPS observation of surface chemistry and electronic structure of α-Fe<sub>2</sub> O<sub>3</sub> and γ-Fe<sub>2</sub> O<sub>3</sub> nanoparticles
Flak, D., Chen, Q., Simon Mun, B., Liu, Z., Rękas, M., & Braun, A. (2018). In situ ambient pressure XPS observation of surface chemistry and electronic structure of α-Fe2 O3 and γ-Fe2 O3 nanoparticles. Applied Surface Science, 455, 1019-1028. https://doi.org/10.1016/j.apsusc.2018.06.002 |
| Nanostructured hematite thin films for photoelectrochemical water splitting
Maabong, K., Machatine, A. G. J., Mwankemwa, B. S., Braun, A., Bora, D. K., Toth, R., & Diale, M. (2018). Nanostructured hematite thin films for photoelectrochemical water splitting. Physica B: Condensed Matter, 535, 67-71. https://doi.org/10.1016/j.physb.2017.06.054 |
| Defects on surface and interface for photoelectrochemical properties of hematite photoanodes
Hu, Y. (2017). Defects on surface and interface for photoelectrochemical properties of hematite photoanodes [Doctoral dissertation, Swiss Federal Institute of Technology Lausanne (EPFL)]. https://doi.org/10.5075/epfl-thesis-7566 |
| Hematite photoanode co-functionalized with self-assembling melanin and C-phycocyanin for solar water splitting at neutral pH
Schrantz, K., Wyss, P. P., Ihssen, J., Toth, R., Bora, D. K., Vitol, E. A., … Braun, A. (2017). Hematite photoanode co-functionalized with self-assembling melanin and C-phycocyanin for solar water splitting at neutral pH. Catalysis Today, 284, 44-51. https://doi.org/10.1016/j.cattod.2016.10.025 |
| Assessment of the electronic structure of solar water splitting photo-electrodes with X-ray and electron spectroscopy
Bora, D. K., & Braun, A. (2015). Assessment of the electronic structure of solar water splitting photo-electrodes with X-ray and electron spectroscopy. In E. A. Rozhkova & K. Ariga (Eds.), From molecules to materials: pathways to artificial photosynthesis (pp. 297-321). https://doi.org/10.1007/978-3-319-13800-8_11 |
| Solar Photoelectrochemical Water Splitting with Bioconjugate and Bio-Hybrid Electrodes
Bora, D. K., Braun, A., & Gajda-Schrantz, K. (2015). Solar Photoelectrochemical Water Splitting with Bioconjugate and Bio-Hybrid Electrodes. In E. A. Rozhkova & K. Ariga (Eds.), From molecules to materials: pathways to artificial photosynthesis (pp. 125-147). https://doi.org/10.1007/978-3-319-13800-8_5 |
| Light harvesting proteins for solar fuel generation in bioengineered photoelectrochemical cells
Ihssen, J., Braun, A., Faccio, G., Gajda-Schrantz, K., & Thöny-Meyer, L. (2014). Light harvesting proteins for solar fuel generation in bioengineered photoelectrochemical cells. Current Protein and Peptide Science, 15(4), 374-384. https://doi.org/10.2174/1389203715666140327105530 |
| Between photocatalysis and photosynthesis: synchrotron spectroscopy methods on molecules and materials for solar hydrogen generation
Bora, D. K., Hu, Y., Thiess, S., Erat, S., Feng, X., Mukherjee, S., … Braun, A. (2013). Between photocatalysis and photosynthesis: synchrotron spectroscopy methods on molecules and materials for solar hydrogen generation. Journal of Electron Spectroscopy and Related Phenomena, 190(art A), 93-105. https://doi.org/10.1016/j.elspec.2012.11.009 |
| Iron resonant photoemission spectroscopy on anodized hematite points to electron hole doping during anodization
Braun, A., Chen, Q., Flak, D., Fortunato, G., Gajda-Schrantz, K., Grätzel, M., … Zhu, J. (2012). Iron resonant photoemission spectroscopy on anodized hematite points to electron hole doping during anodization. ChemPhysChem, 13(12), 2937-2944. https://doi.org/10.1002/cphc.201200074 |
| Differences in electrophysical and gas sensing properties of flame spray synthesized Fe<sub>2</sub>O<sub>3</sub> (<em>γ</em>-Fe<sub>2</sub>O<sub>3</sub> and <em>α</em>-Fe<sub>2</sub>O<sub>3</sub>)
Flak, D., Braun, A., Michalow, K. A., Wyrwa, J., Parlinska-Wojtan, M., Graule, T., & Rekas, M. (2012). Differences in electrophysical and gas sensing properties of flame spray synthesized Fe2O3 (γ-Fe2O3 and α-Fe2O3). Journal of Nanoscience and Nanotechnology, 12(8), 6401-6411. https://doi.org/10.1166/jnn.2012.6429 |