Active Filters

  • (-) Keywords = hydrogen
Search Results 1 - 20 of 27
Select Page
How weather affects energy demand variability in the transition towards sustainable heating
Eggimann, S., Usher, W., Eyre, N., & Hall, J. W. (2020). How weather affects energy demand variability in the transition towards sustainable heating. Energy, 195, 116947 (11 pp.). https://doi.org/10.1016/j.energy.2020.116947
Hydride formation diminishes CO<sub>2</sub> reduction rate on palladium
Billeter, E., Terreni, J., & Borgschulte, A. (2019). Hydride formation diminishes CO2 reduction rate on palladium. ChemPhysChem, 20, 1382-1391. https://doi.org/10.1002/cphc.201801081
Hole and protonic polarons in perovskites
Braun, A., Chen, Q., & Yelon, A. (2019). Hole and protonic polarons in perovskites. Chimia, 73(11), 936-942. https://doi.org/10.2533/chimia.2019.936
Ultra-low NO<sub>x</sub> emissions from catalytic hydrogen combustion
Fumey, B., Buetler, T., & Vogt, U. F. (2018). Ultra-low NOx emissions from catalytic hydrogen combustion. Applied Energy, 213, 334-342. https://doi.org/10.1016/j.apenergy.2018.01.042
Redox-driven restructuring of FeMnZr-oxygen carriers enhances the purity and yield of H&lt;sub&gt;2&lt;/sub&gt; in a chemical looping process
Hosseini, D., Donat, F., Kim, S. M., Bernard, L., Kierzkowska, A. M., & Müller, C. R. (2018). Redox-driven restructuring of FeMnZr-oxygen carriers enhances the purity and yield of H2 in a chemical looping process. ACS Applied Energy Materials, 1(3), 1294-1303. https://doi.org/10.1021/acsaem.8b00023
Nanocrystalline TiO<SUB>2</SUB>/SnO<SUB>2</SUB> heterostructures for gas sensing
Lyson-Sypien, B., Kusior, A., Rekas, M., Zukrowski, J., Gajewska, M., Michalow-Mauke, K., … Zakrzewska, K. (2017). Nanocrystalline TiO2/SnO2 heterostructures for gas sensing. Beilstein Journal of Nanotechnology, 8, 108-122. https://doi.org/10.3762/bjnano.8.12
Investigation of a Pt containing washcoat on SiC foam for hydrogen combustion applications
Fernández, A., Arzac, G. M., Vogt, U. F., Hosoglu, F., Borgschulte, A., Jiménez de Haro, M. C., … Züttel, A. (2016). Investigation of a Pt containing washcoat on SiC foam for hydrogen combustion applications. Applied Catalysis B: Environmental, 180, 336-343. https://doi.org/10.1016/j.apcatb.2015.06.040
The origin of the catalytic activity of a metal hydride in CO<SUB>2</SUB> reduction
Kato, S., Matam, S. K., Kerger, P., Bernard, L., Battaglia, C., Vogel, D., … Züttel, A. (2016). The origin of the catalytic activity of a metal hydride in CO2 reduction. Angewandte Chemie International Edition, 55(20), 6028-6032. https://doi.org/10.1002/anie.201601402
Effects of split port/direct injection of methane and hydrogen in a spark ignition engine
Biffiger, H., & Soltic, P. (2015). Effects of split port/direct injection of methane and hydrogen in a spark ignition engine. International Journal of Hydrogen Energy, 40(4), 1994-2003. https://doi.org/10.1016/j.ijhydene.2014.11.122
Surface reactions are crucial for energy storage
Callini, E., Kato, S., Mauron, P., & Züttel, A. (2015). Surface reactions are crucial for energy storage. Chimia, 69(5), 269-273. https://doi.org/10.2533/chimia.2015.269
Storage of renewable energy by reduction of CO<SUB>2</SUB> with hydrogen
Züttel, A., Mauron, P., Kato, S., Callini, E., Holzer, M., & Huang, J. (2015). Storage of renewable energy by reduction of CO2 with hydrogen. Chimia, 69(5), 264-268. https://doi.org/10.2533/chimia.2015.264
Storing renewable energy in the hydrogen cycle
Züttel, A., Callini, E., Kato, S., & Atakli, Z. Ö. K. (2015). Storing renewable energy in the hydrogen cycle. Chimia, 69(12), 741-745. https://doi.org/10.2533/chimia.2015.741
Improved dehydrogenation and rehydrogenation properties of LiBH<sub>4</sub> by nanosized Ni addition
Li, H. W., Yan, Y., Akiba, E., & Orimo, Sichi. (2014). Improved dehydrogenation and rehydrogenation properties of LiBH4 by nanosized Ni addition. Materials Transactions, 55(8), 1134-1137. https://doi.org/10.2320/matertrans.MG201407
Photocatalytic H2 production with a rhenium/cobalt system in water under acidic conditions
Guttentag, M., Rodenberg, A., Kopelent, R., Probst, B., Buchwalder, C., Brandstätter, M., … Alberto, R. (2012). Photocatalytic H2 production with a rhenium/cobalt system in water under acidic conditions. European Journal of Inorganic Chemistry, 2012(1), 59-64. https://doi.org/10.1002/ejic.201100883
Recent progress in metal borohydrides for hydrogen storage
Li, H. W., Yan, Y., Orimo, Sichi, Züttel, A., & Jensen, C. M. (2011). Recent progress in metal borohydrides for hydrogen storage. Energies, 4(1), 185-214. https://doi.org/10.3390/en4010185
Investigation into the mechanisms leading to explosion of pétanque balls
Loser, R., Piskoty, G., Al-Badri, A., Tuchschmid, M., Schmid, P., & Leemann, A. (2011). Investigation into the mechanisms leading to explosion of pétanque balls. Engineering Failure Analysis, 18(2), 633-648. https://doi.org/10.1016/j.engfailanal.2010.09.029
Effect of H-induced microstructural changes on pressure-optical transmission isotherms for Mg-V thin films
Gonzalez-Silveira, M., Gremaud, R., Baldi, A., Schreuders, H., Dam, B., & Griessen, R. (2010). Effect of H-induced microstructural changes on pressure-optical transmission isotherms for Mg-V thin films. International Journal of Hydrogen Energy, 35(13), 6959-6970. https://doi.org/10.1016/j.ijhydene.2010.03.127
Tomography-based heat and mass transfer characterization of reticulate porous ceramics for high-temperature processing
Haussener, S., Coray, P., Lipiński, W., Wyss, P., & Steinfeld, A. (2010). Tomography-based heat and mass transfer characterization of reticulate porous ceramics for high-temperature processing. Journal of Heat Transfer, 132(2), 023305 (9 pp.). https://doi.org/10.1115/1.4000226
Hydrogen dynamics in lightweight tetrahydroborates
Remhof, A., Gremaud, R., Buchter, F., Łodziana, Z., Embs, J. P., Ramirez-Cuesta, T. A. J., … Züttel, A. (2010). Hydrogen dynamics in lightweight tetrahydroborates. Zeitschrift für Physikalische Chemie, 224(1-2), 263-278. https://doi.org/10.1524/zpch.2010.6104
Hydrogen: the future energy carrier
Züttel, A., Remhof, A., Borgschulte, A., & Friedrichs, O. (2010). Hydrogen: the future energy carrier. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1923), 3329-3342. https://doi.org/10.1098/rsta.2010.0113