Active Filters

  • (-) Keywords = hydrogenation
Search Results 1 - 9 of 9
  • RSS Feed
Select Page
CO<sub>2</sub>-promoted catalytic process forming higher alcohols with tunable nature at record productivity
Luk, H. T., Novak, G., Safonova, O. V., Siol, S., Stewart, J. A., Curulla Ferré, D., … Pérez‐Ramírez, J. (2020). CO2-promoted catalytic process forming higher alcohols with tunable nature at record productivity. ChemCatChem, 12(10), 2732-2744. https://doi.org/10.1002/cctc.202000059
Metallic glass films with nanostructured periodic density fluctuations supported on Si/SiO<sub>2</sub> as an efficient hydrogen sorber
Sarac, B., Ivanov, Y. P., Karazehir, T., Putz, B., Greer, A. L., Sarac, A. S., & Eckert, J. (2020). Metallic glass films with nanostructured periodic density fluctuations supported on Si/SiO2 as an efficient hydrogen sorber. Chemistry: A European Journal, 26(34), 8244-8253. https://doi.org/10.1002/chem.202001596
Atom-by-atom resolution of structure-function relations over low-nuclearity metal catalysts
Vorobyeva, E., Fako, E., Chen, Z., Collins, S. M., Johnstone, D., Midgley, P. A., … Pérez-Ramírez, J. (2019). Atom-by-atom resolution of structure-function relations over low-nuclearity metal catalysts. Angewandte Chemie International Edition, 58(26), 8724-8729. https://doi.org/10.1002/anie.201902136
CO<sub>2</sub> hydrogenation reaction over pristine Fe, Co, Ni, Cu and Al<sub>2</sub>O<sub>3</sub> supported Ru: Comparison and determination of the activation energies
Mutschler, R., Moioli, E., Luo, W., Gallandat, N., & Züttel, A. (2018). CO2 hydrogenation reaction over pristine Fe, Co, Ni, Cu and Al2O3 supported Ru: Comparison and determination of the activation energies. Journal of Catalysis, 366, 139-149. https://doi.org/10.1016/j.jcat.2018.08.002
Protons and the hydrogen economy
Chen, Q., & Braun, A. (2017). Protons and the hydrogen economy. MRS Energy and Sustainability: A Review Journal, 4, E14 (4 pp.). https://doi.org/10.1557/mre.2017.16
Low-loss BaTiO<SUB>3</SUB>–Si waveguides for nonlinear integrated photonics
Eltes, F., Caimi, D., Fallegger, F., Sousa, M., O'Connor, E., Rossell, M. D., … Abel, S. (2016). Low-loss BaTiO3–Si waveguides for nonlinear integrated photonics. ACS Photonics, 3(9), 1698-1703. https://doi.org/10.1021/acsphotonics.6b00350
The origin of the catalytic activity of a metal hydride in CO<SUB>2</SUB> reduction
Kato, S., Matam, S. K., Kerger, P., Bernard, L., Battaglia, C., Vogel, D., … Züttel, A. (2016). The origin of the catalytic activity of a metal hydride in CO2 reduction. Angewandte Chemie International Edition, 55(20), 6028-6032. https://doi.org/10.1002/anie.201601402
Size and shape-controlled Pd nanocrystals on ZnO and SiO<SUB>2</SUB>: when the nature of the support determines the active phase
Crespo-Quesada, M., Yoon, S., Jin, M., Xia, Y., Weidenkaff, A., & Kiwi-Minsker, L. (2014). Size and shape-controlled Pd nanocrystals on ZnO and SiO2: when the nature of the support determines the active phase. ChemCatChem, 6(3), 767-771. https://doi.org/10.1002/cctc.201301043
Low-temperature synthesis of LiBH<SUB>4</SUB> by gas–solid reaction
Friedrichs, O., Borgschulte, A., Kato, S., Buchter, F., Gremaud, R., Remhof, A., & Züttel, A. (2009). Low-temperature synthesis of LiBH4 by gas–solid reaction. Chemistry: A European Journal, 15(22), 5531-5534. https://doi.org/10.1002/chem.200900471