Active Filters

  • (-) Keywords = imaging
  • (-) Keywords ≠ bone
  • (-) Empa Laboratories ≠ 499 Center for X-ray Analytics
Search Results 1 - 13 of 13
  • RSS Feed
Select Page
Graphene oxide‐BODIPY conjugates as highly fluorescent material
Reina, G., Beneventi, G. M., Kaur, R., Biagiotti, G., Cadranel, A., Ménard-Moyon, C., … Bianco, A. (2023). Graphene oxide‐BODIPY conjugates as highly fluorescent material. Chemistry: A European Journal, 29(31), e202300266 (9 pp.). https://doi.org/10.1002/chem.202300266
Recent development of optofluidics for imaging and sensing applications
Tang, J., Qiu, G., & Wang, J. (2022). Recent development of optofluidics for imaging and sensing applications. Chemosensors, 10(1), 15 (20 pp.). https://doi.org/10.3390/chemosensors10010015
Luminescent lead halide ionic liquids for high-spatial-resolution fast neutron imaging
Morad, V., McCall, K. M., Sakhatskyi, K., Lehmann, E., Walfort, B., Losko, A. S., … Kovalenko, M. V. (2021). Luminescent lead halide ionic liquids for high-spatial-resolution fast neutron imaging. ACS Photonics, 8(11), 3357-3364. https://doi.org/10.1021/acsphotonics.1c01348
Rapid 3D chemical visualization with tabletop XUV laser mass spectrometry
Bleiner, D., Rush, L. A., Rocca, J. J., & Menoni, C. S. (2019). Rapid 3D chemical visualization with tabletop XUV laser mass spectrometry. In A. Klisnick & C. S. Menoni (Eds.), Proceedings of SPIE: Vol. 11111. X-ray lasers and coherent X-ray sources: development and applications XIII (p. 1111107 (10 pp.). https://doi.org/10.1117/12.2528160
Conductivity image characterization of gold nanoparticles based-device through atomic force microscopy
Lay-Ekuakille, A., Spano, F., Kapita Mvemba, P., Massaro, A., Galiano, A., Casciaro, S., & Conversano, F. (2019). Conductivity image characterization of gold nanoparticles based-device through atomic force microscopy. In H. Ponce, R. Velázquez, & Z. Wang (Eds.), 2018 Nanotechnology for Instrumentation and Measurement (NANOfIM) (p. (6 pp.). https://doi.org/10.1109/NANOFIM.2018.8688617
Cellular level distributions of Scots pine heartwood and knot heartwood extractives revealed by Raman spectroscopy imaging
Belt, T., Keplinger, T., Hänninen, T., & Rautkari, L. (2017). Cellular level distributions of Scots pine heartwood and knot heartwood extractives revealed by Raman spectroscopy imaging. Industrial Crops and Products, 108, 327-335. https://doi.org/10.1016/j.indcrop.2017.06.056
A review on advanced imaging technologies for the quantification of wicking in textiles
Parada, M., Derome, D., Rossi, R. M., & Carmeliet, J. (2017). A review on advanced imaging technologies for the quantification of wicking in textiles. Textile Research Journal, 87(1), 110-132. https://doi.org/10.1177/0040517515622151
Understanding forced convective drying of apple tissue: combining neutron radiography and numerical modelling
Aregawi, W., Defraeye, T., Saneinejad, S., Vontobel, P., Lehmann, E., Carmeliet, J., … Nicolai, B. (2014). Understanding forced convective drying of apple tissue: combining neutron radiography and numerical modelling. Innovative Food Science and Emerging Technologies, 24, 97-105. https://doi.org/10.1016/j.ifset.2013.10.014
Novel application of neutron radiography to forced convective drying of fruit tissue
Defraeye, T., Aregawi, W., Saneinejad, S., Vontobel, P., Lehmann, E., Carmeliet, J., … Nicolaï, B. (2013). Novel application of neutron radiography to forced convective drying of fruit tissue. Food and Bioprocess Technology, 6(12), 3353-3367. https://doi.org/10.1007/s11947-012-0999-y
Sampling, defining, characterising and modeling the rhizosphere—the soil science tool box
Luster, J., Göttlein, A., Nowack, B., & Sarret, G. (2009). Sampling, defining, characterising and modeling the rhizosphere—the soil science tool box. Plant and Soil, 321(1-2), 457-482. https://doi.org/10.1007/s11104-008-9781-3
STM vizualization of thiol-containing peptide dendrimers on Au(111)
Delort, E., Szöcs, E., Widmer, R., Siegenthaler, H., & Reymond, J. L. (2007). STM vizualization of thiol-containing peptide dendrimers on Au(111). Macromolecular Bioscience, 7(8), 1024-1031. https://doi.org/10.1002/mabi.200700036
The method of neutron imaging as a tool for the study of the dynamics of water movement in wet aramid-based ballistic body armour panels
Reifler, F. A., Lehmann, E. H., Frei, G., May, H., & Rossi, R. (2006). The method of neutron imaging as a tool for the study of the dynamics of water movement in wet aramid-based ballistic body armour panels. Measurement Science and Technology, 17(7), 1925-1934. https://doi.org/10.1088/0957-0233/17/7/034
Time-of-flight secondary ion mass spectrometry of industrial materials
Keller, B. A., & Hug, P. (1999). Time-of-flight secondary ion mass spectrometry of industrial materials. Analytica Chimica Acta, 393(1-3), 201-212. https://doi.org/10.1016/S0003-2670(99)00017-3