Active Filters

  • (-) Keywords = interfaces
Search Results 1 - 17 of 17
  • RSS Feed
Select Page
Role of layer order on the equi-biaxial behavior of Al/Mo bilayers
Cordill, M. J., Kreiml, P., Putz, B., Mitterer, C., Thiaudière, D., Mocuta, C., … Faurie, D. (2021). Role of layer order on the equi-biaxial behavior of Al/Mo bilayers. Scripta Materialia, 194, 113656 (5 pp.). https://doi.org/10.1016/j.scriptamat.2020.113656
Nanofiber membranes as biomimetic and mechanically stable surface coatings
Brunelli, M., Alther, S., Rossi, R. M., Ferguson, S. J., Rottmar, M., & Fortunato, G. (2020). Nanofiber membranes as biomimetic and mechanically stable surface coatings. Materials Science and Engineering C: Biomimetic Materials, Sensors and Systems, 108, 110417 (12 pp.). https://doi.org/10.1016/j.msec.2019.110417
Reinforced local heterogeneities in interfacial tension distribution in polymer blends by incorporating carbon nanotubes
Gooneie, A., & Holzer, C. (2017). Reinforced local heterogeneities in interfacial tension distribution in polymer blends by incorporating carbon nanotubes. Polymer, 125, 90-101. https://doi.org/10.1016/j.polymer.2017.07.077
Electron energy loss spectroscopy analysis of the interaction of Cr and V with MWCNTs
Ilari, G. M., Chawla, V., Matam, S., Zhang, Y., Michler, J., & Erni, R. (2016). Electron energy loss spectroscopy analysis of the interaction of Cr and V with MWCNTs. Micron, 84, 37-42. https://doi.org/10.1016/j.micron.2016.02.009
Synergistic effects in silver–indium electrocatalysts for carbon dioxide reduction
Larrazábal, G. O., Martín, A. J., Mitchell, S., Hauert, R., & Pérez-Ramírez, J. (2016). Synergistic effects in silver–indium electrocatalysts for carbon dioxide reduction. Journal of Catalysis, 343, 266-277. https://doi.org/10.1016/j.jcat.2015.12.014
Carbon–metal interfaces analyzed by aberration-corrected TEM: how copper and nickel nanoparticles interact with MWCNTs
Ilari, G. M., Hage, F. S., Zhang, Y., Rossell, M. D., Ramasse, Q. M., Niederberger, M., & Erni, R. (2015). Carbon–metal interfaces analyzed by aberration-corrected TEM: how copper and nickel nanoparticles interact with MWCNTs. Micron, 72, 52-58. https://doi.org/10.1016/j.micron.2015.03.004
Copper-based nanostructured coatings for low-temperature brazing applications
Lehmert, B., Janczak-Rusch, J., Pigozzi, G., Zuraw, P., La Mattina, F., Wojarski, L., … Jeurgens, L. P. H. (2015). Copper-based nanostructured coatings for low-temperature brazing applications. Materials Transactions, 56(7), 1015-1018. https://doi.org/10.2320/matertrans.MI201419
Comparing small scale plasticity of copper-chromium nanolayered and alloyed thin films at elevated temperatures
Raghavan, R., Harzer, T. P., Chawla, V., Djaziri, S., Phillipi, B., Wehrs, J., … Dehm, G. (2015). Comparing small scale plasticity of copper-chromium nanolayered and alloyed thin films at elevated temperatures. Acta Materialia, 93, 175-186. https://doi.org/10.1016/j.actamat.2015.04.008
Mechanical behavior of Cu/TiN multilayers at ambient and elevated temperatures: stress-assisted diffusion of Cu
Raghavan, R., Wheeler, J. M., Esqué-de los Ojos, D., Thomas, K., Almandoz, E., Fuentes, G. G., & Michler, J. (2015). Mechanical behavior of Cu/TiN multilayers at ambient and elevated temperatures: stress-assisted diffusion of Cu. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 620, 375-382. https://doi.org/10.1016/j.msea.2014.10.023
Transition from shear to stress-assisted diffusion of copper–chromium nanolayered thin films at elevated temperatures
Raghavan, R., Wheeler, J. M., Harzer, T. P., Chawla, V., Djaziri, S., Thomas, K., … Dehm, G. (2015). Transition from shear to stress-assisted diffusion of copper–chromium nanolayered thin films at elevated temperatures. Acta Materialia, 100, 73-80. https://doi.org/10.1016/j.actamat.2015.08.016
Interfacial design for joining technologies: an historical perspective
Janczak-Rusch, J., Kaptay, G., & Jeurgens, L. P. H. (2014). Interfacial design for joining technologies: an historical perspective. Journal of Materials Engineering and Performance, 23(5), 1608-1613. https://doi.org/10.1007/s11665-014-0928-5
Investigation of the interfacial phases formed between carbon nanotubes and aluminum in a bulk material
Kwon, H., Takamichi, M., Kawasaki, A., & Leparoux, M. (2013). Investigation of the interfacial phases formed between carbon nanotubes and aluminum in a bulk material. Materials Chemistry and Physics, 138(2-3), 787-793. https://doi.org/10.1016/j.matchemphys.2012.12.062
Interface dipoles for tuning energy level alignment in organic thin film devices
Nüesch, F. A. (2013). Interface dipoles for tuning energy level alignment in organic thin film devices. Chimia, 67(11), 796-803. https://doi.org/10.2533/chimia.2013.796
Room temperature metalation of 2H-TPP monolayer on iron and nickel surfaces by picking up substrate metal atoms
Goldoni, A., Pignedoli, C. A., Di Santo, G., Castellarin-Cudia, C., Magnano, E., Bondino, F., … Passerone, D. (2012). Room temperature metalation of 2H-TPP monolayer on iron and nickel surfaces by picking up substrate metal atoms. ACS Nano, 6(12), 10800-10807. https://doi.org/10.1021/nn304134q
Liquid metal/ceramic interactions in the (Cu, Ag, Au)/ZrB<SUB>2</SUB> systems
Passerone, A., Muolo, M. L., Novakovic, R., & Passerone, D. (2007). Liquid metal/ceramic interactions in the (Cu, Ag, Au)/ZrB2 systems. Journal of the European Ceramic Society, 27(10), 3277-3285. https://doi.org/10.1016/j.jeurceramsoc.2006.12.008
On the chemistry at the Si,Ti-doped a-C:H/TiC interface
Ernst, K. H., & Oral, B. (2004). On the chemistry at the Si,Ti-doped a-C:H/TiC interface. Thin Solid Films, 446(1), 72-77. https://doi.org/10.1016/S0040-6090(03)01324-5
Microstructure and properties of monazite (LaPO<sub>4</sub>) coated saphikon fiber/alumina matrix composites
Chawla, K. K., Liu, H., Janczak-Rusch, J., & Sambasivan, S. (2000). Microstructure and properties of monazite (LaPO4) coated saphikon fiber/alumina matrix composites. Journal of the European Ceramic Society, 20(5), 551-559. https://doi.org/10.1016/S0955-2219(99)00253-8