Active Filters

  • (-) Keywords = laser welding
  • (-) Keywords ≠ comfort
Search Results 1 - 13 of 13
  • RSS Feed
Select Page
Smart closed-loop control of laser welding using reinforcement learning
Le Quang, T., Meylan, B., Masinelli, G., Saeidi, F., Shevchik, S. A., Farahani, F. V., & Wasmer, K. (2022). Smart closed-loop control of laser welding using reinforcement learning. In M. Schmidt, F. Vollertsen, & B. M. Colosimo (Eds.), Procedia CIRP: Vol. 111. 12th CIRP conference on photonic technologies [LANE 2022] (pp. 479-483). https://doi.org/10.1016/j.procir.2022.08.074
Metal‐textile laser welding for wearable sensors applications
Fromme, N. P., Li, Y., Camenzind, M., Toncelli, C., & Rossi, R. M. (2021). Metal‐textile laser welding for wearable sensors applications. Advanced Electronic Materials, 7(4), 2001238 (9 pp.). https://doi.org/10.1002/aelm.202001238
Real-time defects analyses using high-speed imaging during aluminum magnesium alloy laser welding
Mihai, S., Chioibasu, D., Mahmood, M. A., Duta, L., Leparoux, M., & Popescu, A. C. (2021). Real-time defects analyses using high-speed imaging during aluminum magnesium alloy laser welding. Metals, 11(11), 1877 (16 pp.). https://doi.org/10.3390/met11111877
Adaptive laser welding control: a reinforcement learning approach
Masinelli, G., Le-Quang, T., Zanoli, S., Wasmer, K., & Shevchik, S. A. (2020). Adaptive laser welding control: a reinforcement learning approach. IEEE Access, 8, 103803-103814. https://doi.org/10.1109/ACCESS.2020.2998052
Re-solidification dynamics and microstructural analysis of laser welded aluminium
Meylan, B., Le-Quang, T., Olbinado, M. P., Rack, A., Shevchik, S. A., & Wasmer, K. (2020). Re-solidification dynamics and microstructural analysis of laser welded aluminium. International Journal of Materials Research, 111(1), 17-22. https://doi.org/10.3139/146.111838
Influence of temporal and spectral profiles of lasers on weld quality of titanium
Mohanta, A., Leistner, M., & Leparoux, M. (2020). Influence of temporal and spectral profiles of lasers on weld quality of titanium. Optics and Lasers in Engineering, 134, 106173 (11 pp.). https://doi.org/10.1016/j.optlaseng.2020.106173
Spectroscopic investigation of laser produced plasma of carbon nanotube reinforced AlMg5 metal matrix nanocomposites
Mohanta, A., & Leparoux, M. (2019). Spectroscopic investigation of laser produced plasma of carbon nanotube reinforced AlMg5 metal matrix nanocomposites. Optics and Lasers in Engineering, 121, 37-45. https://doi.org/10.1016/j.optlaseng.2019.03.007
Laser welding quality monitoring via graph support vector machine with data adaptive kernel
Shevchik, S. A., Le-Quang, T., Farahani, F. V., Faivre, N., Meylan, B., Zanoli, S., & Wasmer, K. (2019). Laser welding quality monitoring via graph support vector machine with data adaptive kernel. IEEE Access, 7, 93108-93122. https://doi.org/10.1109/ACCESS.2019.2927661
Why is in situ quality control of laser keyhole welding a real challenge?
Le-Quang, T., Shevchik, S. A., Meylan, B., Vakili-Farahani, F., Olbinado, M. P., Rack, A., & Wasmer, K. (2018). Why is in situ quality control of laser keyhole welding a real challenge? In M. Schmidt, F. Vollertsen, & G. Dearden (Eds.), Procedia CIRP: Vol. 74. 10th CIRP conference on photonic technologies [LANE 2018] (pp. 649-653). https://doi.org/10.1016/j.procir.2018.08.055
Laser processing quality monitoring by combining acoustic emission and machine learning: a high-speed X-ray imaging approach
Wasmer, K., Le-Quang, T., Meylan, B., Vakili-Farahani, F., Olbinado, M. P., Rack, A., & Shevchik, S. A. (2018). Laser processing quality monitoring by combining acoustic emission and machine learning: a high-speed X-ray imaging approach. In M. Schmidt, F. Vollertsen, & G. Dearden (Eds.), Procedia CIRP: Vol. 74. 10th CIRP conference on photonic technologies [LANE 2018] (pp. 654-658). https://doi.org/10.1016/j.procir.2018.08.054
Control of porosity and spatter in laser welding of thick AlMg5 parts using high-speed imaging and optical microscopy
Popescu, A. C., Delval, C., & Leparoux, M. (2017). Control of porosity and spatter in laser welding of thick AlMg5 parts using high-speed imaging and optical microscopy. Metals, 7(11), 452 (12 pp.). https://doi.org/10.3390/met7110452
Absorbing TiO<em><sub>x</sub></em> thin film enabling laser welding of polyurethane membranes and polyamide fibers
Amberg, M., Haag, A., Storchenegger, R., Rupper, P., Lehmeier, F., Rossi, R. M., & Hegemann, D. (2015). Absorbing TiOx thin film enabling laser welding of polyurethane membranes and polyamide fibers. Science and Technology of Advanced Materials, 16(5), 055002 (7 pp.). https://doi.org/10.1088/1468-6996/16/5/055002
The characterization of laser welded joints at EMPA
Weber, F., & Harzenmoser, M. (1998). The characterization of laser welded joints at EMPA (pp. 839-845). Presented at the Eurojoin 3. Third European conference on joining technology. .