Active Filters

  • (-) Keywords = magnesium
Search Results 1 - 17 of 17
  • RSS Feed
Select Page
Stability of hydrotalcite (Mg-Al layered double hydroxide) in presence of different anions
Bernard, E., Zucha, W. J., Lothenbach, B., & Mäder, U. (2022). Stability of hydrotalcite (Mg-Al layered double hydroxide) in presence of different anions. Cement and Concrete Research, 152, 106674 (16 pp.). https://doi.org/10.1016/j.cemconres.2021.106674
Sustainability through alloy design: challenges and opportunities
Cann, J. L., De Luca, A., Dunand, D. C., Dye, D., Miracle, D. B., Oh, H. S., … Tasan, C. C. (2021). Sustainability through alloy design: challenges and opportunities. Progress in Materials Science, 117, 100722 (33 pp.). https://doi.org/10.1016/j.pmatsci.2020.100722
{101<sup>-</sup>2} twinning mechanism during <em>in situ</em> micro-tensile loading of pure Mg: Role of basal slip and twin-twin interactions
Della Ventura, N. M., Kalácska, S., Casari, D., Edwards, T. E. J., Sharma, A., Michler, J., … Maeder, X. (2021). {101-2} twinning mechanism during in situ micro-tensile loading of pure Mg: Role of basal slip and twin-twin interactions. Materials and Design, 197, 109206 (15 pp.). https://doi.org/10.1016/j.matdes.2020.109206
Zeolite-templated carbon as a stable, high power magnesium-ion cathode material
Dubey, R. J. C., Colijn, T., Aebli, M., Hanson, E. E., Widmer, R., Kravchyk, K. V., … Stadie, N. P. (2019). Zeolite-templated carbon as a stable, high power magnesium-ion cathode material. ACS Applied Materials and Interfaces, 11(43), 39902-39909. https://doi.org/10.1021/acsami.9b11968
Colloidal bismuth Nanocrystals as a model anode material for rechargeable Mg-ion batteries: atomistic and mesoscale insights
Kravchyk, K. V., Piveteau, L., Caputo, R., He, M., Stadie, N. P., Bodnarchuk, M. I., … Kovalenko, M. V. (2018). Colloidal bismuth Nanocrystals as a model anode material for rechargeable Mg-ion batteries: atomistic and mesoscale insights. ACS Nano, 12(8), 8297-8307. https://doi.org/10.1021/acsnano.8b03572
Influence of trace impurities on the <I>in vitro</I> and <I>in vivo</I> degradation of biodegradable Mg–5Zn–0.3Ca alloys
Hofstetter, J., Martinelli, E., Pogatscher, S., Schmutz, P., Povoden-Karadeniz, E., Weinberg, A. M., … Löffler, J. F. (2015). Influence of trace impurities on the in vitro and in vivo degradation of biodegradable Mg–5Zn–0.3Ca alloys. Acta Biomaterialia, 23, 347-353. https://doi.org/10.1016/j.actbio.2015.05.004
Effect of H-induced microstructural changes on pressure-optical transmission isotherms for Mg-V thin films
Gonzalez-Silveira, M., Gremaud, R., Baldi, A., Schreuders, H., Dam, B., & Griessen, R. (2010). Effect of H-induced microstructural changes on pressure-optical transmission isotherms for Mg-V thin films. International Journal of Hydrogen Energy, 35(13), 6959-6970. https://doi.org/10.1016/j.ijhydene.2010.03.127
The influence of heat treatment and plastic deformation on the bio-degradation of a Mg-Y-RE alloy
Gunde, P., Furrer, A., Hänzi, A. C., Schmutz, P., & Uggowitzer, P. J. (2010). The influence of heat treatment and plastic deformation on the bio-degradation of a Mg-Y-RE alloy. Journal of Biomedical Materials Research. Part A, 92(2), 409-418. https://doi.org/10.1002/jbm.a.32350
The influence of heat treatment and plastic deformation on the bio-degradation of a Mg-Y-RE alloy
Gunde, P., Furrer, A., Hänzi, A. C., Schmutz, P., & Uggowitzer, P. J. (2009). The influence of heat treatment and plastic deformation on the bio-degradation of a Mg-Y-RE alloy. In M. S. Dargusch & S. Keay (Eds.), Materials science forum: Vol. 618-619. Light metals technology 2009 (pp. 71-74). https://doi.org/10.4028/www.scientific.net/MSF.618-619.71
A preliminary quantitative XPS study of the surface films formed on pure magnesium and on magnesium-aluminium intermetallics by exposure to high-purity water
Liu, M., Zanna, S., Ardelean, H., Frateur, I., Schmutz, P., Song, G., … Marcus, P. (2009). A preliminary quantitative XPS study of the surface films formed on pure magnesium and on magnesium-aluminium intermetallics by exposure to high-purity water. In M. S. Dargusch & S. Keay (Eds.), Materials science forum: Vol. 618-619. Light metals technology 2009 (pp. 255-262). https://doi.org/10.4028/www.scientific.net/MSF.618-619.255
Calculated phase diagrams and the corrosion of die-cast Mg-Al alloys
Liu, M., Uggowitzer, P. J., Nagasekhar, A. V., Schmutz, P., Easton, M., Song, G. L., & Atrens, A. (2009). Calculated phase diagrams and the corrosion of die-cast Mg-Al alloys. Corrosion Science, 51(3), 602-619. https://doi.org/10.1016/j.corsci.2008.12.015
Room-temperature creep and structural relaxation of Mg-Cu-Y metallic glasses
Castellero, A., Moser, B., Uhlenhaut, D. I., Dalla Torre, F. H., & Löffler, J. F. (2008). Room-temperature creep and structural relaxation of Mg-Cu-Y metallic glasses. Acta Materialia, 56(15), 3777-3785. https://doi.org/10.1016/j.actamat.2008.04.021
The effect of crystallographic orientation on the active corrosion of pure magnesium
Liu, M., Qiu, D., Zhao, M. C., Song, G., & Atrens, A. (2008). The effect of crystallographic orientation on the active corrosion of pure magnesium. Scripta Materialia, 58(5), 421-424. https://doi.org/10.1016/j.scriptamat.2007.10.027
Electrochemical behavior of magnesium alloys AZ91D, AZCe2, and AZLa1 in chloride and sulfate solutions
Wu, G., Fan, Y., Atrens, A., Zhai, C., & Ding, W. (2008). Electrochemical behavior of magnesium alloys AZ91D, AZCe2, and AZLa1 in chloride and sulfate solutions. Journal of Applied Electrochemistry, 38(2), 251-257. https://doi.org/10.1007/s10800-007-9433-y
Urinary excretion of an intravenous <SUP>26</SUP>Mg dose as an indicator of marginal magnesium deficiency in adults
Wälti, M. K., Walczyk, T., Zimmermann, M. B., Fortunato, G., Weber, M., Spinas, G. A., & Hurrell, R. F. (2006). Urinary excretion of an intravenous 26Mg dose as an indicator of marginal magnesium deficiency in adults. European Journal of Clinical Nutrition, 60(2), 147-154. https://doi.org/10.1038/sj.ejcn.1602278
Mechanical anisotropy of extruded Mg-6% Al-1% Zn alloy
Kleiner, S., & Uggowitzer, P. J. (2004). Mechanical anisotropy of extruded Mg-6% Al-1% Zn alloy. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 379(1-2), 258-263. https://doi.org/10.1016/j.msea.2004.02.020
Microstructure and mechanical properties of squeeze cast and semi-solid cast Mg-Al alloys
Kleiner, S., Beffort, O., Wahlen, A., & Uggowitzer, P. J. (2002). Microstructure and mechanical properties of squeeze cast and semi-solid cast Mg-Al alloys. Journal of Light Metals, 2(4), 277-280. https://doi.org/10.1016/S1471-5317(03)00012-9