| The colloidal properties of nanocellulose
Benselfelt, T., Kummer, N., Nordenström, M., Fall, A. B., Nyström, G., & Wågberg, L. (2023). The colloidal properties of nanocellulose. ChemSusChem. https://doi.org/10.1002/cssc.202201955 |
| Printed structurally colored cellulose sensors and displays
Wei, J., Aeby, X., & Nyström, G. (2023). Printed structurally colored cellulose sensors and displays. Advanced Materials Technologies, 8(1), 2200897 (7 pp.). https://doi.org/10.1002/admt.202200897 |
| Sustainable cellulose nanofiber films from carrot pomace as sprayable coatings for food packaging applications
Amoroso, L., De France, K. J., Milz, C. I., Siqueira, G., Zimmermann, T., & Nyström, G. (2022). Sustainable cellulose nanofiber films from carrot pomace as sprayable coatings for food packaging applications. ACS Sustainable Chemistry and Engineering, 10(1), 342-352. https://doi.org/10.1021/acssuschemeng.1c06345 |
| Charged-cellulose nanofibrils as a nutrient carrier in biodegradable polymers for enhanced efficiency fertilizers
França, D., Siqueira, G., Nyström, G., Clemens, F., Fonseca Souza, C., & Faez, R. (2022). Charged-cellulose nanofibrils as a nutrient carrier in biodegradable polymers for enhanced efficiency fertilizers. Carbohydrate Polymers, 296, 119934 (12 pp.). https://doi.org/10.1016/j.carbpol.2022.119934 |
| Benchmarking supramolecular adhesive behavior of nanocelluloses, cellulose derivatives and proteins
Luotonen, O. I. V., Greca, L. G., Nyström, G., Guo, J., Richardson, J. J., Rojas, O. J., & Tardy, B. L. (2022). Benchmarking supramolecular adhesive behavior of nanocelluloses, cellulose derivatives and proteins. Carbohydrate Polymers, 292, 119681 (9 pp.). https://doi.org/10.1016/j.carbpol.2022.119681 |
| Pilot-scale modification of polyethersulfone membrane with a size and charge selective nanocellulose layer
Pöhler, T., Mautner, A., Aguilar-Sanchez, A., Hansmann, B., Kunnari, V., Grönroos, A., … Tammelin, T. (2022). Pilot-scale modification of polyethersulfone membrane with a size and charge selective nanocellulose layer. Separation and Purification Technology, 285, 120341 (12 pp.). https://doi.org/10.1016/j.seppur.2021.120341 |
| Fully 3D printed and disposable paper supercapacitors
Aeby, X., Poulin, A., Siqueira, G., Hausmann, M. K., & Nyström, G. (2021). Fully 3D printed and disposable paper supercapacitors. Advanced Materials, 33(26), 2101328 (9 pp.). https://doi.org/10.1002/adma.202101328 |
| Virus pH‐dependent interactions with cationically modified cellulose and their application in water filtration
Watts, S., Maniura‐Weber, K., Siqueira, G., & Salentinig, S. (2021). Virus pH‐dependent interactions with cationically modified cellulose and their application in water filtration. Small, 17(30), 2100307 (10 pp.). https://doi.org/10.1002/smll.202100307 |
| Ultrafine cellulose nanofiber-assisted physical and chemical cross-linking of MXene sheets for electromagnetic interference shielding
Wu, N., Zeng, Z., Kummer, N., Han, D., Zenobi, R., & Nyström, G. (2021). Ultrafine cellulose nanofiber-assisted physical and chemical cross-linking of MXene sheets for electromagnetic interference shielding. Small Methods, 5(12), 2100889 (10 pp.). https://doi.org/10.1002/smtd.202100889 |
| Terahertz birefringent biomimetic aerogels based on cellulose nanofibers and conductive nanomaterials
Zeng, Z., Mavrona, E., Sacré, D., Kummer, N., Cao, J., Müller, L. A. E., … Nyström, G. (2021). Terahertz birefringent biomimetic aerogels based on cellulose nanofibers and conductive nanomaterials. ACS Nano, 15(4), 7451-7462. https://doi.org/10.1021/acsnano.1c00856 |
| Human hazard potential of nanocellulose: quantitative insights from the literature
Stoudmann, N., Schmutz, M., Hirsch, C., Nowack, B., & Som, C. (2020). Human hazard potential of nanocellulose: quantitative insights from the literature. Nanotoxicology, 14(9), 1241-1257. https://doi.org/10.1080/17435390.2020.1814440 |
| Tunable gas barrier properties of filled-PCL film by forming percolating cellulose network
Follain, N., Belbekhouche, S., Bras, J., Siqueira, G., Chappey, C., Marais, S., & Dufresne, A. (2018). Tunable gas barrier properties of filled-PCL film by forming percolating cellulose network. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 545, 26-30. https://doi.org/10.1016/j.colsurfa.2018.02.040 |
| Liquid crystalline filamentous biological colloids: analogies and differences
Nyström, G., & Mezzenga, R. (2018). Liquid crystalline filamentous biological colloids: analogies and differences. Current Opinion in Colloid and Interface Science, 38, 30-44. https://doi.org/10.1016/j.cocis.2018.08.004 |
| Nanoparticles capture on cellulose nanofiber depth filters
Sehaqui, H., Spera, P., Huch, A., & Zimmermann, T. (2018). Nanoparticles capture on cellulose nanofiber depth filters. Carbohydrate Polymers, 201, 482-489. https://doi.org/10.1016/j.carbpol.2018.07.068 |
| Insights into pore size control in cellulose nanopapers through modeling and experiments
Szekeres, G. P., Nemeth, Z., Schrantz, K., Hernadi, K., & Graule, T. (2018). Insights into pore size control in cellulose nanopapers through modeling and experiments. Journal of Nanoscience and Nanotechnology, 18(4), 3000-3005. https://doi.org/10.1166/jnn.2018.14536 |
| 3D printing of strong lightweight cellular structures using polysaccharide-based composite foams
Voisin, H. P., Gordeyeva, K., Siqueira, G., Hausmann, M. K., Studart, A. R., & Bergström, L. (2018). 3D printing of strong lightweight cellular structures using polysaccharide-based composite foams. ACS Sustainable Chemistry and Engineering, 6(12), 17160-17167. https://doi.org/10.1021/acssuschemeng.8b04549 |
| Enhanced antimicrobial activity and structural transitions of a nanofibrillated cellulose–nisin biocomposite suspension
Weishaupt, R., Heuberger, L., Siqueira, G., Gutt, B., Zimmermann, T., Maniura-Weber, K., … Faccio, G. (2018). Enhanced antimicrobial activity and structural transitions of a nanofibrillated cellulose–nisin biocomposite suspension. ACS Applied Materials and Interfaces, 10(23), 20170-20181. https://doi.org/10.1021/acsami.8b04470 |
| The chemical-free production of nanocelluloses from microcrystalline cellulose and their use as Pickering emulsion stabilizer
Buffiere, J., Balogh-Michels, Z., Borrega, M., Geiger, T., Zimmermann, T., & Sixta, H. (2017). The chemical-free production of nanocelluloses from microcrystalline cellulose and their use as Pickering emulsion stabilizer. Carbohydrate Polymers, 178, 48-56. https://doi.org/10.1016/j.carbpol.2017.09.028 |
| Humic acid desorption from a positively charged nanocellulose surface
Sehaqui, H., Schaufelberger, L., Michen, B., & Zimmermann, T. (2017). Humic acid desorption from a positively charged nanocellulose surface. Journal of Colloid and Interface Science, 504, 500-506. https://doi.org/10.1016/j.jcis.2017.06.006 |
| Simple green route to performance improvement of fully bio-based linseed oil coating using nanofibrillated cellulose
Veigel, S., Lems, E. M., Grüll, G., Hansmann, C., Rosenau, T., Zimmermann, T., & Gindl-Altmutter, W. (2017). Simple green route to performance improvement of fully bio-based linseed oil coating using nanofibrillated cellulose. Polymers, 9(9), 425 (13 pp.). https://doi.org/10.3390/polym9090425 |