Active Filters

  • (-) Keywords = nanocellulose
Search Results 1 - 15 of 15
  • RSS Feed
Select Page
Fully 3D printed and disposable paper supercapacitors
Aeby, X., Poulin, A., Siqueira, G., Hausmann, M. K., & Nyström, G. (2021). Fully 3D printed and disposable paper supercapacitors. Advanced Materials, 33(26), 2101328 (9 pp.). https://doi.org/10.1002/adma.202101328
Virus pH‐dependent interactions with cationically modified cellulose and their application in water filtration
Watts, S., Maniura‐Weber, K., Siqueira, G., & Salentinig, S. (2021). Virus pH‐dependent interactions with cationically modified cellulose and their application in water filtration. Small, 17(30), 2100307 (10 pp.). https://doi.org/10.1002/smll.202100307
Terahertz birefringent biomimetic aerogels based on cellulose nanofibers and conductive nanomaterials
Zeng, Z., Mavrona, E., Sacré, D., Kummer, N., Cao, J., Müller, L. A. E., … Nyström, G. (2021). Terahertz birefringent biomimetic aerogels based on cellulose nanofibers and conductive nanomaterials. ACS Nano, 15(4), 7451-7462. https://doi.org/10.1021/acsnano.1c00856
Human hazard potential of nanocellulose: quantitative insights from the literature
Stoudmann, N., Schmutz, M., Hirsch, C., Nowack, B., & Som, C. (2020). Human hazard potential of nanocellulose: quantitative insights from the literature. Nanotoxicology, 14(9), 1241-1257. https://doi.org/10.1080/17435390.2020.1814440
Tunable gas barrier properties of filled-PCL film by forming percolating cellulose network
Follain, N., Belbekhouche, S., Bras, J., Siqueira, G., Chappey, C., Marais, S., & Dufresne, A. (2018). Tunable gas barrier properties of filled-PCL film by forming percolating cellulose network. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 545, 26-30. https://doi.org/10.1016/j.colsurfa.2018.02.040
Liquid crystalline filamentous biological colloids: analogies and differences
Nyström, G., & Mezzenga, R. (2018). Liquid crystalline filamentous biological colloids: analogies and differences. Current Opinion in Colloid and Interface Science, 38, 30-44. https://doi.org/10.1016/j.cocis.2018.08.004
Nanoparticles capture on cellulose nanofiber depth filters
Sehaqui, H., Spera, P., Huch, A., & Zimmermann, T. (2018). Nanoparticles capture on cellulose nanofiber depth filters. Carbohydrate Polymers, 201, 482-489. https://doi.org/10.1016/j.carbpol.2018.07.068
Insights into pore size control in cellulose nanopapers through modeling and experiments
Szekeres, G. P., Nemeth, Z., Schrantz, K., Hernadi, K., & Graule, T. (2018). Insights into pore size control in cellulose nanopapers through modeling and experiments. Journal of Nanoscience and Nanotechnology, 18(4), 3000-3005. https://doi.org/10.1166/jnn.2018.14536
3D printing of strong lightweight cellular structures using polysaccharide-based composite foams
Voisin, H. P., Gordeyeva, K., Siqueira, G., Hausmann, M. K., Studart, A. R., & Bergström, L. (2018). 3D printing of strong lightweight cellular structures using polysaccharide-based composite foams. ACS Sustainable Chemistry and Engineering, 6(12), 17160-17167. https://doi.org/10.1021/acssuschemeng.8b04549
Enhanced antimicrobial activity and structural transitions of a nanofibrillated cellulose–nisin biocomposite suspension
Weishaupt, R., Heuberger, L., Siqueira, G., Gutt, B., Zimmermann, T., Maniura-Weber, K., … Faccio, G. (2018). Enhanced antimicrobial activity and structural transitions of a nanofibrillated cellulose–nisin biocomposite suspension. ACS Applied Materials and Interfaces, 10(23), 20170-20181. https://doi.org/10.1021/acsami.8b04470
The chemical-free production of nanocelluloses from microcrystalline cellulose and their use as Pickering emulsion stabilizer
Buffiere, J., Balogh-Michels, Z., Borrega, M., Geiger, T., Zimmermann, T., & Sixta, H. (2017). The chemical-free production of nanocelluloses from microcrystalline cellulose and their use as Pickering emulsion stabilizer. Carbohydrate Polymers, 178, 48-56. https://doi.org/10.1016/j.carbpol.2017.09.028
Humic acid desorption from a positively charged nanocellulose surface
Sehaqui, H., Schaufelberger, L., Michen, B., & Zimmermann, T. (2017). Humic acid desorption from a positively charged nanocellulose surface. Journal of Colloid and Interface Science, 504, 500-506. https://doi.org/10.1016/j.jcis.2017.06.006
Simple green route to performance improvement of fully bio-based linseed oil coating using nanofibrillated cellulose
Veigel, S., Lems, E. M., Grüll, G., Hansmann, C., Rosenau, T., Zimmermann, T., & Gindl-Altmutter, W. (2017). Simple green route to performance improvement of fully bio-based linseed oil coating using nanofibrillated cellulose. Polymers, 9(9), 425 (13 pp.). https://doi.org/10.3390/polym9090425
Bio-inspired functional wood-based materials – hybrids and replicates
Burgert, I., Cabane, E., Zollfrank, C., & Berglund, L. (2015). Bio-inspired functional wood-based materials – hybrids and replicates. International Materials Reviews, 60(8), 431-450. https://doi.org/10.1179/1743280415Y.0000000009
Life cycle assessment of a new technology to extract, functionalize and orient cellulose nanofibers from food waste
Piccinno, F., Hischier, R., Seeger, S., & Som, C. (2015). Life cycle assessment of a new technology to extract, functionalize and orient cellulose nanofibers from food waste. ACS Sustainable Chemistry and Engineering, 3(6), 1047-1055. https://doi.org/10.1021/acssuschemeng.5b00209