| Colloidal aziridinium lead bromide quantum dots
Bodnarchuk, M. I., Feld, L. G., Zhu, C., Boehme, S. C., Bertolotti, F., Avaro, J., … Kovalenko, M. V. (2024). Colloidal aziridinium lead bromide quantum dots. ACS Nano, 18, 5684-5697. https://doi.org/10.1021/acsnano.3c11579 |
| Dark-Bright exciton splitting dominates low-temperature diffusion in halide perovskite nanocrystal assemblies
Bornschlegl, A. J., Lichtenegger, M. F., Luber, L., Lampe, C., Bodnarchuk, M. I., Kovalenko, M. V., & Urban, A. S. (2024). Dark-Bright exciton splitting dominates low-temperature diffusion in halide perovskite nanocrystal assemblies. Advanced Energy Materials, 14(10), 2303312 (10 pp.). https://doi.org/10.1002/aenm.202303312 |
| The impact of ligand removal on the optoelectronic properties of inorganic and hybrid lead halide perovskite nanocrystal films
Papagiorgis, P., Sergides, M., Manoli, A., Athanasiou, M., Bernasconi, C., Galatopoulos, F., … Itskos, G. (2024). The impact of ligand removal on the optoelectronic properties of inorganic and hybrid lead halide perovskite nanocrystal films. Advanced Optical Materials, 12(3), 2301501 (13 pp.). https://doi.org/10.1002/adom.202301501 |
| All-perovskite multicomponent nanocrystal superlattices
Sekh, T. V., Cherniukh, I., Kobiyama, E., Sheehan, T. J., Manoli, A., Zhu, C., … Kovalenko, M. V. (2024). All-perovskite multicomponent nanocrystal superlattices. ACS Nano, 18(11), 8423-8436. https://doi.org/10.1021/acsnano.3c13062 |
| Enhancing the stability of perovskite nanocrystals in polyacrylate composites
Skrypnyk, T., Bespalova, I., Boesel, L., & Sorokin, O. (2024). Enhancing the stability of perovskite nanocrystals in polyacrylate composites. Functional Materials, 31(2), 252-259. https://doi.org/10.15407/fm31.02.252 |
| Confinement and exciton binding energy effects on hot carrier cooling in lead halide perovskite nanomaterials
Carwithen, B. P., Hopper, T. R., Ge, Z., Mondal, N., Wang, T., Mazlumian, R., … Bakulin, A. A. (2023). Confinement and exciton binding energy effects on hot carrier cooling in lead halide perovskite nanomaterials. ACS Nano, 17(7), 6638-6648. https://doi.org/10.1021/acsnano.2c12373 |
| Intrinsic formamidinium tin iodide nanocrystals by suppressing the Sn(IV) impurities
Dirin, D. N., Vivani, A., Zacharias, M., Sekh, T. V., Cherniukh, I., Yakunin, S., … Bodnarchuk, M. I. (2023). Intrinsic formamidinium tin iodide nanocrystals by suppressing the Sn(IV) impurities. Nano Letters, 23, 1914-1923. https://doi.org/10.1021/acs.nanolett.2c04927 |
| Growth and self-assembly of CsPbBr<sub>3 </sub>nanocrystals in the TOPO/PbBr<sub>2</sub> synthesis as seen with X-ray scattering
Montanarella, F., Akkerman, Q. A., Bonatz, D., van der Sluijs, M. M., van der Bok, J. C., Prins, P. T., … Kovalenko, M. V. (2023). Growth and self-assembly of CsPbBr3 nanocrystals in the TOPO/PbBr2 synthesis as seen with X-ray scattering. Nano Letters, 23(2), 667-676. https://doi.org/10.1021/acs.nanolett.2c04532 |
| Direct observation of ultrafast lattice distortions during exciton-polaron formation in lead halide perovskite nanocrystals
Seiler, H., Zahn, D., Taylor, V. C. A., Bodnarchuk, M. I., Windsor, Y. W., Kovalenko, M. V., & Ernstorfer, R. (2023). Direct observation of ultrafast lattice distortions during exciton-polaron formation in lead halide perovskite nanocrystals. ACS Nano, 17(3), 1979-1988. https://doi.org/10.1021/acsnano.2c06727 |
| Improvement of perovskite nanocrystals stability by incorporation into polymer cross-linked systems
Skrypnyk, T., Bespalova, I., Bodnarchuk, M., Boesel, L., & Kovalenko, M. (2023). Improvement of perovskite nanocrystals stability by incorporation into polymer cross-linked systems. In Proceedings of the 2023 IEEE 13th international conference nanomaterials: applications & properties (IEEE NAP-2023) (pp. NEE031-NEE035). https://doi.org/10.1109/NAP59739.2023.10310688 |
| Flexible, free-standing polymer membranes sensitized by CsPbX3 nanocrystals as gain media for low threshold, multicolor light amplification
Athanasiou, M., Manoli, A., Papagiorgis, P., Georgiou, K., Berezovska, Y., Othonos, A., … Itskos, G. (2022). Flexible, free-standing polymer membranes sensitized by CsPbX3 nanocrystals as gain media for low threshold, multicolor light amplification. ACS Photonics, 9(7), 2385-2397. https://doi.org/10.1021/acsphotonics.2c00426 |
| Amplified spontaneous emission threshold dependence on determination method in dye-doped polymer and lead halide perovskite waveguides
Milanese, S., De Giorgi, M. L., Cerdán, L., La-Placa, M. G., Jamaludin, N. F., Bruno, A., … Anni, M. (2022). Amplified spontaneous emission threshold dependence on determination method in dye-doped polymer and lead halide perovskite waveguides. Molecules, 27(13), 4261 (15 pp.). https://doi.org/10.3390/molecules27134261 |
| Three millennia of nanocrystals
Montanarella, F., & Kovalenko, M. V. (2022). Three millennia of nanocrystals. ACS Nano, 16(4), 5085-5102. https://doi.org/10.1021/acsnano.1c11159 |
| Efficient amplified spontaneous emission from solution-processed CsPbBr<sub>3</sub> nanocrystal microcavities under continuous wave excitation
Athanasiou, M., Papagiorgis, P., Manoli, A., Bernasconi, C., Bodnarchuk, M. I., Kovalenko, M. V., & Itskos, G. (2021). Efficient amplified spontaneous emission from solution-processed CsPbBr3 nanocrystal microcavities under continuous wave excitation. ACS Photonics, 8(7), 2120-2129. https://doi.org/10.1021/acsphotonics.1c00565 |
| Surface functionalization of CsPbBr<sub>3</sub> nanocrystals for photonic applications
Manoli, A., Papagiorgis, P., Sergides, M., Bernasconi, C., Athanasiou, M., Pozov, S., … Itskos, G. (2021). Surface functionalization of CsPbBr3 nanocrystals for photonic applications. ACS Applied Nano Materials, 4(5), 5084-5097. https://doi.org/10.1021/acsanm.1c00558 |
| InGaN nanohole arrays coated by lead halide perovskite nanocrystals for solid-state lighting
Athanasiou, M., Papagiorgis, P., Manoli, A., Bernasconi, C., Poyiatzis, N., Coulon, P. M., … Itskos, G. (2020). InGaN nanohole arrays coated by lead halide perovskite nanocrystals for solid-state lighting. ACS Applied Nano Materials, 3(3), 2167-2175. https://doi.org/10.1021/acsanm.9b02154 |
| Unraveling the origin of the long fluorescence decay component of cesium lead halide perovskite nanocrystals
Becker, M. A., Bernasconi, C., Bodnarchuk, M. I., Rainò, G., Kovalenko, M. V., Norris, D. J., … Stöferle, T. (2020). Unraveling the origin of the long fluorescence decay component of cesium lead halide perovskite nanocrystals. ACS Nano, 14(11), 14939-14946. https://doi.org/10.1021/acsnano.0c04401 |
| Correlative cathodoluminescence electron microscopy: immunolabeling using rare‐earth element doped nanoparticles
Keevend, K., Krummenacher, R., Kungas, E., Gerken, L. R. H., Gogos, A., Stiefel, M., & Herrmann, I. K. (2020). Correlative cathodoluminescence electron microscopy: immunolabeling using rare‐earth element doped nanoparticles. Small, 16(44), 2004615 (10 pp.). https://doi.org/10.1002/smll.202004615 |
| CsPbBr<sub>3</sub> nanocrystal films: deviations from bulk vibrational and optoelectronic properties
Motti, S. G., Krieg, F., Ramadan, A. J., Patel, J. B., Snaith, H. J., Kovalenko, M. V., … Herz, L. M. (2020). CsPbBr3 nanocrystal films: deviations from bulk vibrational and optoelectronic properties. Advanced Functional Materials, 30(19), 1909904 (9 pp.). https://doi.org/10.1002/adfm.201909904 |
| Colloidal-ALD-grown core/shell CdSe/CdS nanoplatelets as seen by DNP enhanced PASS-PIETA NMR spectroscopy
Piveteau, L., Dirin, D. N., Gordon, C. P., Walder, B. J., Ong, T. C., Emsley, L., … Kovalenko, M. V. (2020). Colloidal-ALD-grown core/shell CdSe/CdS nanoplatelets as seen by DNP enhanced PASS-PIETA NMR spectroscopy. Nano Letters, 20(5), 3003-3018. https://doi.org/10.1021/acs.nanolett.9b04870 |