Active Filters

  • (-) Keywords = nanocrystals
  • (-) Keywords ≠ lead halide perovskites
Search Results 1 - 20 of 43
Select Page
Colloidal aziridinium lead bromide quantum dots
Bodnarchuk, M. I., Feld, L. G., Zhu, C., Boehme, S. C., Bertolotti, F., Avaro, J., … Kovalenko, M. V. (2024). Colloidal aziridinium lead bromide quantum dots. ACS Nano, 18, 5684-5697. https://doi.org/10.1021/acsnano.3c11579
Dark-Bright exciton splitting dominates low-temperature diffusion in halide perovskite nanocrystal assemblies
Bornschlegl, A. J., Lichtenegger, M. F., Luber, L., Lampe, C., Bodnarchuk, M. I., Kovalenko, M. V., & Urban, A. S. (2024). Dark-Bright exciton splitting dominates low-temperature diffusion in halide perovskite nanocrystal assemblies. Advanced Energy Materials. https://doi.org/10.1002/aenm.202303312
Confinement and exciton binding energy effects on hot carrier cooling in lead halide perovskite nanomaterials
Carwithen, B. P., Hopper, T. R., Ge, Z., Mondal, N., Wang, T., Mazlumian, R., … Bakulin, A. A. (2023). Confinement and exciton binding energy effects on hot carrier cooling in lead halide perovskite nanomaterials. ACS Nano, 17(7), 6638-6648. https://doi.org/10.1021/acsnano.2c12373
Intrinsic formamidinium tin iodide nanocrystals by suppressing the Sn(IV) impurities
Dirin, D. N., Vivani, A., Zacharias, M., Sekh, T. V., Cherniukh, I., Yakunin, S., … Bodnarchuk, M. I. (2023). Intrinsic formamidinium tin iodide nanocrystals by suppressing the Sn(IV) impurities. Nano Letters, 23, 1914-1923. https://doi.org/10.1021/acs.nanolett.2c04927
Growth and self-assembly of CsPbBr<sub>3 </sub>nanocrystals in the TOPO/PbBr<sub>2</sub> synthesis as seen with X-ray scattering
Montanarella, F., Akkerman, Q. A., Bonatz, D., van der Sluijs, M. M., van der Bok, J. C., Prins, P. T., … Kovalenko, M. V. (2023). Growth and self-assembly of CsPbBr3 nanocrystals in the TOPO/PbBr2 synthesis as seen with X-ray scattering. Nano Letters, 23(2), 667-676. https://doi.org/10.1021/acs.nanolett.2c04532
Improvement of perovskite nanocrystals stability by incorporation into polymer cross-linked systems
Skrypnyk, T., Bespalova, I., Bodnarchuk, M., Boesel, L., & Kovalenko, M. (2023). Improvement of perovskite nanocrystals stability by incorporation into polymer cross-linked systems. In Proceedings of the 2023 IEEE 13th international conference nanomaterials: applications & properties (IEEE NAP-2023) (pp. NEE031-NEE035). https://doi.org/10.1109/NAP59739.2023.10310688
Surface functionalization of CsPbBr<sub>3</sub> nanocrystals for photonic applications
Manoli, A., Papagiorgis, P., Sergides, M., Bernasconi, C., Athanasiou, M., Pozov, S., … Itskos, G. (2021). Surface functionalization of CsPbBr3 nanocrystals for photonic applications. ACS Applied Nano Materials, 4(5), 5084-5097. https://doi.org/10.1021/acsanm.1c00558
Unraveling the origin of the long fluorescence decay component of cesium lead halide perovskite nanocrystals
Becker, M. A., Bernasconi, C., Bodnarchuk, M. I., Rainò, G., Kovalenko, M. V., Norris, D. J., … Stöferle, T. (2020). Unraveling the origin of the long fluorescence decay component of cesium lead halide perovskite nanocrystals. ACS Nano, 14(11), 14939-14946. https://doi.org/10.1021/acsnano.0c04401
Correlative cathodoluminescence electron microscopy: immunolabeling using rare‐earth element doped nanoparticles
Keevend, K., Krummenacher, R., Kungas, E., Gerken, L. R. H., Gogos, A., Stiefel, M., & Herrmann, I. K. (2020). Correlative cathodoluminescence electron microscopy: immunolabeling using rare‐earth element doped nanoparticles. Small, 16(44), 2004615 (10 pp.). https://doi.org/10.1002/smll.202004615
CsPbBr&lt;sub&gt;3&lt;/sub&gt; nanocrystal films: deviations from bulk vibrational and optoelectronic properties
Motti, S. G., Krieg, F., Ramadan, A. J., Patel, J. B., Snaith, H. J., Kovalenko, M. V., … Herz, L. M. (2020). CsPbBr3 nanocrystal films: deviations from bulk vibrational and optoelectronic properties. Advanced Functional Materials, 30(19), 1909904 (9 pp.). https://doi.org/10.1002/adfm.201909904
Colloidal-ALD-grown core/shell CdSe/CdS nanoplatelets as seen by DNP enhanced PASS-PIETA NMR spectroscopy
Piveteau, L., Dirin, D. N., Gordon, C. P., Walder, B. J., Ong, T. C., Emsley, L., … Kovalenko, M. V. (2020). Colloidal-ALD-grown core/shell CdSe/CdS nanoplatelets as seen by DNP enhanced PASS-PIETA NMR spectroscopy. Nano Letters, 20(5), 3003-3018. https://doi.org/10.1021/acs.nanolett.9b04870
Microcarrier-assisted inorganic shelling of lead halide perovskite nanocrystals
Dirin, D. N., Benin, B. M., Yakunin, S., Krumeich, F., Raino, G., Frison, R., & Kovalenko, M. V. (2019). Microcarrier-assisted inorganic shelling of lead halide perovskite nanocrystals. ACS Nano, 13(10), 11642-11652. https://doi.org/10.1021/acsnano.9b05481
Ultrabright and stable luminescent labels for correlative cathodoluminescence electron microscopy (CCLEM) bioimaging
Keevend, K., Puust, L., Kurvits, K., Gerken, L. R. H., Starsich, F. H. L., Li, J. H., … Herrmann, I. K. (2019). Ultrabright and stable luminescent labels for correlative cathodoluminescence electron microscopy (CCLEM) bioimaging. Nano Letters, 19(9), 6013-6018. https://doi.org/10.1021/acs.nanolett.9b01819
Robust hydrophobic and hydrophilic polymer fibers sensitized by inorganic and hybrid lead halide perovskite nanocrystal emitters
Papagiorgis, P. G., Manoli, A., Alexiou, A., Karacosta, P., Karagiorgis, X., Papaparaskeva, G., … Itskos, G. (2019). Robust hydrophobic and hydrophilic polymer fibers sensitized by inorganic and hybrid lead halide perovskite nanocrystal emitters. Frontiers in Chemistry, 7, 87 (12 pp.). https://doi.org/10.3389/fchem.2019.00087
Unraveling the radiative pathways of hot carriers upon intense photoexcitation of lead halide perovskite nanocrystals
Papagiorgis, P., Manoli, A., Michael, S., Bernasconi, C., Bodnarchuk, M. I., Kovalenko, M. V., … Itskos, G. (2019). Unraveling the radiative pathways of hot carriers upon intense photoexcitation of lead halide perovskite nanocrystals. ACS Nano, 13(5), 5799-5809. https://doi.org/10.1021/acsnano.9b01398
Long exciton dephasing time and coherent phonon coupling in CsPbBr&lt;sub&gt;2&lt;/sub&gt;Cl perovskite nanocrystals
Becker, M. A., Scarpelli, L., Nedelcu, G., Rainò, G., Masia, F., Borri, P., … Mahrt, R. F. (2018). Long exciton dephasing time and coherent phonon coupling in CsPbBr2Cl perovskite nanocrystals. Nano Letters, 18, 7546-7551. https://doi.org/10.1021/acs.nanolett.8b03027
Pick a color MARIA: adaptive sampling enables the rapid identification of complex perovskite nanocrystal compositions with defined emission characteristics
Bezinge, L., Maceiczyk, R. M., Lignos, I., Kovalenko, M. V., & deMello, A. J. (2018). Pick a color MARIA: adaptive sampling enables the rapid identification of complex perovskite nanocrystal compositions with defined emission characteristics. ACS Applied Materials and Interfaces, 10(22), 18869-18878. https://doi.org/10.1021/acsami.8b03381
Evidencing early pyrochlore formation in rare-earth doped TiO<sub>2</sub> nanocrystals: Structure sensing via VIS and NIR Er<sup>3+</sup> light emission
Camps, I., Borlaf, M., Toudert, J., de Andrés, A., Colomer, M. T., Moreno, R., & Serna, R. (2018). Evidencing early pyrochlore formation in rare-earth doped TiO2 nanocrystals: Structure sensing via VIS and NIR Er3+ light emission. Journal of Alloys and Compounds, 735, 2267-2274. https://doi.org/10.1016/j.jallcom.2017.11.262
Exploration of near-infrared-emissive colloidal multinary lead halide perovskite nanocrystals using an automated microfluidic platform
Lignos, I., Morad, V., Shynkarenko, Y., Bernasconi, C., Maceiczyk, R. M., Protesescu, L., … Kovalenko, M. V. (2018). Exploration of near-infrared-emissive colloidal multinary lead halide perovskite nanocrystals using an automated microfluidic platform. ACS Nano, 12(6), 5504-5517. https://doi.org/10.1021/acsnano.8b01122
Unveiling the shape evolution and halide-ion-segregation in blue-emitting formamidinium lead halide perovskite nanocrystals using an automated microfluidic platform
Lignos, I., Protesescu, L., Emiroglu, D. B., MacEiczyk, R., Schneider, S., Kovalenko, M. V., & DeMello, A. J. (2018). Unveiling the shape evolution and halide-ion-segregation in blue-emitting formamidinium lead halide perovskite nanocrystals using an automated microfluidic platform. Nano Letters, 18(2), 1246-1252. https://doi.org/10.1021/acs.nanolett.7b04838