Active Filters

  • (-) Keywords = nanofibers
  • (-) Keywords ≠ absorbable
Search Results 1 - 20 of 20
  • RSS Feed
Select Page
Electrospun (K,Na)NbO<sub>3</sub> piezoceramic fibers for self-powered tactile sensing application
Ichangi, A., Derichsweiler, C., Mathur, S., & Clemens, F. (2024). Electrospun (K,Na)NbO3 piezoceramic fibers for self-powered tactile sensing application. Advanced Engineering Materials, 26(1), 230166 (10 pp.). https://doi.org/10.1002/adem.202301066
The effect of substrate properties on cellular behavior and nanoparticle uptake in human fibroblasts and epithelial cells
Sousa de Almeida, M., Lee, A., Itel, F., Maniura-Weber, K., Petri-Fink, A., & Rothen-Rutishauser, B. (2024). The effect of substrate properties on cellular behavior and nanoparticle uptake in human fibroblasts and epithelial cells. Nanomaterials, 14(4), 342 (16 pp.). https://doi.org/10.3390/nano14040342
Electrospinning of ZrO<sub>2</sub> fibers without sol-gel methods: effect of inorganic Zr-source on electrospinning properties and phase composition
Lusiola, T., Ichangi, A., Weil, D., Sebastian, T., Aneziris, C., Graule, T., & Clemens, F. (2023). Electrospinning of ZrO2 fibers without sol-gel methods: effect of inorganic Zr-source on electrospinning properties and phase composition. Open Ceramics, 13, 100324 (8 pp.). https://doi.org/10.1016/j.oceram.2022.100324
Improving needleless electrospinning throughput by tailoring polyurethane solution properties with polysiloxane additives
Iranshahi, K., Schoeller, J., Luisier, N., Chung, M., Hashemizadeh, S., Fortunato, G., … Rossi, R. M. (2022). Improving needleless electrospinning throughput by tailoring polyurethane solution properties with polysiloxane additives. ACS Applied Polymer Materials, 4(3), 2205-2215. https://doi.org/10.1021/acsapm.2c00263
Polyamide nanofiber-based air filters for transparent face masks
Avossa, J., Batt, T., Pelet, T., Sidjanski, S. P., Schönenberger, K., & Rossi, R. M. (2021). Polyamide nanofiber-based air filters for transparent face masks. ACS Applied Nano Materials, 4(11), 12401-12406. https://doi.org/10.1021/acsanm.1c02843
Seaweed-derived alginate-cellulose nanofiber aerogel for insulation applications
Berglund, L., Nissilä, T., Sivaraman, D., Komulainen, S., Telkki, V. V., & Oksman, K. (2021). Seaweed-derived alginate-cellulose nanofiber aerogel for insulation applications. ACS Applied Materials and Interfaces, 13(29), 34899-34909. https://doi.org/10.1021/acsami.1c07954
Characterization and estimation of dielectric constant of electrospun BaTiO<sub>3</sub> nanofibers at different calcination temperatures using theoretical models
Hedayati, M., Taheri-Nassaj, E., Yourdkhani, A., Borlaf, M., Rasekh, S., Amirkhizi, P., … Clemens, F. J. (2021). Characterization and estimation of dielectric constant of electrospun BaTiO3 nanofibers at different calcination temperatures using theoretical models. Journal of the European Ceramic Society, 41(2), 1299-1309. https://doi.org/10.1016/j.jeurceramsoc.2020.09.072
Electrospun nanofibers for electrochemical reduction of CO&lt;sub&gt;2&lt;/sub&gt;: a mini review
Zong, X., Jin, Y., Liu, C., Yao, Y., Zhang, J., Luo, W., … Xiong, Y. (2021). Electrospun nanofibers for electrochemical reduction of CO2: a mini review. Electrochemistry Communications, 124, 106968 (8 pp.). https://doi.org/10.1016/j.elecom.2021.106968
Electrospinning of Y&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt;- and MgO-stabilized zirconia nanofibers and characterization of the evolving phase composition and morphology during thermal treatment
Heuer, C., Storti, E., Graule, T., & Aneziris, C. G. (2020). Electrospinning of Y2O3- and MgO-stabilized zirconia nanofibers and characterization of the evolving phase composition and morphology during thermal treatment. Ceramics International, 46(8), 12001-12008. https://doi.org/10.1016/j.ceramint.2020.01.240
Establishing multiple osteogenic differentiation pathways of mesenchymal stem cells through different scaffold configurations
Nedjari, S., Awaja, F., Guarino, R., Gugutkov, D., & Altankov, G. (2020). Establishing multiple osteogenic differentiation pathways of mesenchymal stem cells through different scaffold configurations. Journal of Tissue Engineering and Regenerative Medicine, 14(10), 1428-1437. https://doi.org/10.1002/term.3108
Macromechanics and polycaprolactone fiber organization drive macrophage polarization and regulate inflammatory activation of tendon &lt;em&gt;in vitro&lt;/em&gt; and &lt;em&gt;in vivo&lt;/em&gt;
Schoenenberger, A. D., Tempfer, H., Lehner, C., Egloff, J., Mauracher, M., Bird, A., … Snedeker, J. G. (2020). Macromechanics and polycaprolactone fiber organization drive macrophage polarization and regulate inflammatory activation of tendon in vitro and in vivo. Biomaterials, 249, 120034 (14 pp.). https://doi.org/10.1016/j.biomaterials.2020.120034
Enhancing dielectric properties of barium titanate macrofibers
Sebastian, T., Michalek, A., Hedayati, M., Lusiola, T., & Clemens, F. (2019). Enhancing dielectric properties of barium titanate macrofibers. Journal of the European Ceramic Society, 39(13), 3716-3721. https://doi.org/10.1016/j.jeurceramsoc.2019.05.040
Application of response surface methodology to tailor the surface chemistry of electrospun chitosan-poly(ethylene oxide) fibers
Bösiger, P., Richard, I. M. T., LeGat, L., Michen, B., Schubert, M., Rossi, R. M., & Fortunato, G. (2018). Application of response surface methodology to tailor the surface chemistry of electrospun chitosan-poly(ethylene oxide) fibers. Carbohydrate Polymers, 186, 122-131. https://doi.org/10.1016/j.carbpol.2018.01.038
Merging flexibility with superinsulation: machinable, nanofibrous pullulan-silica aerogel composites
Zhao, S., Emery, O., Wohlhauser, A., Koebel, M. M., Adlhart, C., & Malfait, W. J. (2018). Merging flexibility with superinsulation: machinable, nanofibrous pullulan-silica aerogel composites. Materials and Design, 160, 294-302. https://doi.org/10.1016/j.matdes.2018.09.010
Encapsulation of polyphenols into pHEMA e-spun fibers and determination of their antioxidant activities
Ghitescu, R. E., Popa, A. M., Popa, V. I., Rossi, R. M., & Fortunato, G. (2015). Encapsulation of polyphenols into pHEMA e-spun fibers and determination of their antioxidant activities. International Journal of Pharmaceutics, 494(1), 278-287. https://doi.org/10.1016/j.ijpharm.2015.08.020
Design and synthesis of polyimide – gold nanofibers with tunable optical properties
Serbezeanu, D., Popa, A. M., Sava, I., Carja, I. D., Amberg, M., Rossi, R. M., & Fortunato, G. (2015). Design and synthesis of polyimide – gold nanofibers with tunable optical properties. European Polymer Journal, 64, 10-20. https://doi.org/10.1016/j.eurpolymj.2014.12.006
The role of the protein corona in fiber structure-activity relationships
Kucki, M., Kaiser, J. P., Clift, M. J. D., Rothen-Rutishauser, B., Petri-Fink, A., & Wick, P. (2014). The role of the protein corona in fiber structure-activity relationships. Fibers, 2(3), 187-210. https://doi.org/10.3390/fib2030187
Controlled formation of poly(ε-caprolactone) ultrathin electrospun nanofibers in a hydrolytic degradation-assisted process
Lavielle, N., Popa, A. M., de Geus, M., Hébraud, A., Schlatter, G., Thöny-Meyer, L., & Rossi, R. M. (2013). Controlled formation of poly(ε-caprolactone) ultrathin electrospun nanofibers in a hydrolytic degradation-assisted process. European Polymer Journal, 49(6), 1331-1336. https://doi.org/10.1016/j.eurpolymj.2013.02.038
Simultaneous electrospinning and electrospraying: a straightforward approach for fabricating hierarchically structured composite membranes
Lavielle, N., Hébraud, A., Schlatter, G., Thöny-Meyer, L., Rossi, R. M., & Popa, A. M. (2013). Simultaneous electrospinning and electrospraying: a straightforward approach for fabricating hierarchically structured composite membranes. ACS Applied Materials and Interfaces, 5(20), 10090-10097. https://doi.org/10.1021/am402676m
Effect of the addition of a fugitive salt on electrospinnability of poly(ε-caprolactone)
Moghe, A. K., Hufenus, R., Hudson, S. M., & Gupta, B. S. (2009). Effect of the addition of a fugitive salt on electrospinnability of poly(ε-caprolactone). Polymer, 50(14), 3311-3318. https://doi.org/10.1016/j.polymer.2009.04.063