Active Filters

  • (-) Keywords = nanomaterials
Search Results 1 - 20 of 37
Select Page
Importance of the number emission factor of combustion-generated aerosols from nano-enabled products
Hammer, T., Bossa, N., Persson, M., Wichser, A., Lehner, K., Ruggiero, E., … Wang, J. (2021). Importance of the number emission factor of combustion-generated aerosols from nano-enabled products. NanoImpact, 22, 100307 (11 pp.). https://doi.org/10.1016/j.impact.2021.100307
Probabilistic modelling of nanobiomaterial release from medical applications into the environment
Hauser, M., & Nowack, B. (2021). Probabilistic modelling of nanobiomaterial release from medical applications into the environment. Environment International, 146, 106184 (13 pp.). https://doi.org/10.1016/j.envint.2020.106184
Understanding and improving carbon nanotube-electrode contact in bottom-contacted nanotube gas sensors
Jung, S., Hauert, R., Haluska, M., Roman, C., & Hierold, C. (2021). Understanding and improving carbon nanotube-electrode contact in bottom-contacted nanotube gas sensors. Sensors and Actuators B: Chemical, 331, 129406 (8 pp.). https://doi.org/10.1016/j.snb.2020.129406
Recent insights on indirect mechanisms in developmental toxicity of nanomaterials
Dugershaw, B. B., Aengenheister, L., Schmidt Kjølner Hansen, S., Sørig Hougaard, K., & Buerki-Thurnherr, T. (2020). Recent insights on indirect mechanisms in developmental toxicity of nanomaterials. Particle and Fibre Toxicology, 17(1), 31 (22 pp.). https://doi.org/10.1186/s12989-020-00359-x
Understanding nanomaterial biotransformation: an unmet challenge to achieving predictive nanotoxicology
Milosevic, A., Romeo, D., & Wick, P. (2020). Understanding nanomaterial biotransformation: an unmet challenge to achieving predictive nanotoxicology. Small, 16(36), 1907650 (5 pp.). https://doi.org/10.1002/smll.201907650
Safe(r) by design implementation in the nanotechnology industry
Sánchez Jiménez, A., Puelles, R., Pérez-Fernández, M., Gómez-Fernández, P., Barruetabeña, L., Jacobsen, N. R., … Rodríguez Llopis, I. (2020). Safe(r) by design implementation in the nanotechnology industry. NanoImpact, 20, 100267 (12 pp.). https://doi.org/10.1016/j.impact.2020.100267
Identifying ecotoxicological descriptors to enable predictive hazard assessments of nano-TiO<sub>2</sub> from a meta-analysis of ecotoxicological data
Cai, Y., Nowack, B., & Wigger, H. (2019). Identifying ecotoxicological descriptors to enable predictive hazard assessments of nano-TiO2 from a meta-analysis of ecotoxicological data. NanoImpact, 15, 100180 (9 pp.). https://doi.org/10.1016/j.impact.2019.100180
Joining technology innovations at the macro, micro, and nano levels
Hu, A., Janczak-Rusch, J., & Sano, T. (2019). Joining technology innovations at the macro, micro, and nano levels. Applied Sciences, 9(17), 3568 (9 pp.). https://doi.org/10.3390/app9173568
Mechanical, thermal and electrical properties of nanostructured CNTs/SiC composites
Lanfant, B., Leconte, Y., Debski, N., Bonnefont, G., Pinault, M., Mayne-L′Hermite, M., … Bernard, F. (2019). Mechanical, thermal and electrical properties of nanostructured CNTs/SiC composites. Ceramics International, 45(2), 2566-2575. https://doi.org/10.1016/j.ceramint.2018.10.187
Interference of engineered nanomaterials in flow cytometry: a case study
Bohmer, N., Rippl, A., May, S., Walter, A., Heo, M. B., Kwak, M., … Hirsch, C. (2018). Interference of engineered nanomaterials in flow cytometry: a case study. Colloids and Surfaces B: Biointerfaces, 172, 635-645. https://doi.org/10.1016/j.colsurfb.2018.09.021
Most important factors of variability and uncertainty in an LCA study of nanomaterials – findings from a case study with nano titanium dioxide
Hischier, R., Salieri, B., & Pini, M. (2017). Most important factors of variability and uncertainty in an LCA study of nanomaterials – findings from a case study with nano titanium dioxide. NanoImpact, 7, 17-26. https://doi.org/10.1016/j.impact.2017.05.001
Zuverlässigkeit in der Nanosicherheitsforschung. Reliability for nanosafety research
Krug, H. F., & Nau, K. (2017). Zuverlässigkeit in der Nanosicherheitsforschung. Reliability for nanosafety research. Chemie Ingenieur Technik, 89(3), 215-223. https://doi.org/10.1002/cite.201600088
Environmental benefits and concerns on safety: communicating latest results on nanotechnology safety research - the project DaNa<SUP>2.0</SUP>
Kühnel, D., Marquardt, C., Nau, K., Krug, H. F., Paul, F., & Steinbach, C. (2017). Environmental benefits and concerns on safety: communicating latest results on nanotechnology safety research - the project DaNa2.0. Environmental Science and Pollution Research, 24(12), 11120-11125. https://doi.org/10.1007/s11356-016-6217-0
Nanocrystalline TiO<SUB>2</SUB>/SnO<SUB>2</SUB> heterostructures for gas sensing
Lyson-Sypien, B., Kusior, A., Rekas, M., Zukrowski, J., Gajewska, M., Michalow-Mauke, K., … Zakrzewska, K. (2017). Nanocrystalline TiO2/SnO2 heterostructures for gas sensing. Beilstein Journal of Nanotechnology, 8, 108-122. https://doi.org/10.3762/bjnano.8.12
Environmental risk assessment strategy for nanomaterials
Scott‐Fordsmand, J. J., Peijnenburg, W. J. G. M., Semenzin, E., Nowack, B., Hunt, N., Hristozov, D., … Hund‐Rinke, K. (2017). Environmental risk assessment strategy for nanomaterials. International Journal of Environmental Research and Public Health, 14(10), 1251 (20 pp.). https://doi.org/10.3390/ijerph14101251
DaNa 2.0 ― verlässliche Informationen zur Sicherheit von marktüblichen Nanomaterialien. DaNa 2.0 ― reliable information on the safety of commercially available nanomaterials
Steinbach, C., Bohmer, N., Krug, H. F., Kühnel, D., Nau, K., Paul, F., … Marquardt, C. (2017). DaNa 2.0 ― verlässliche Informationen zur Sicherheit von marktüblichen Nanomaterialien. DaNa 2.0 ― reliable information on the safety of commercially available nanomaterials. Chemie Ingenieur Technik, 89(3), 232-238. https://doi.org/10.1002/cite.201600074
Frameworks and tools for risk assessment of manufactured nanomaterials
Hristozov, D., Gottardo, S., Semenzin, E., Oomen, A., Bos, P., Peijnenburg, W., … Marcomini, A. (2016). Frameworks and tools for risk assessment of manufactured nanomaterials. Environment International, 95, 36-53. https://doi.org/10.1016/j.envint.2016.07.016
The DaNa<SUP>2.0</SUP> knowledge base on nanomaterials ― communicating current nanosafety research based on evaluated literature data
Nau, K., Bohmer, N., Kühnel, D., Marquardt, C., Paul, F., Steinbach, C., & Krug, H. F. (2016). The DaNa2.0 knowledge base on nanomaterials ― communicating current nanosafety research based on evaluated literature data. Journal of Materials Education, 38(3-4), 93-108.
Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products
Mitrano, D. M., Motellier, S., Clavaguera, S., & Nowack, B. (2015). Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environment International, 77, 132-147. https://doi.org/10.1016/j.envint.2015.01.013
Scientific basis for regulatory decision-making of nanomaterials report on the workshop, 20–21 January 2014, center of applied ecotoxicology, Dübendorf
Studer, C., Aicher, L., Gasic, B., von Goetz, N., Hoet, P., Huwyler, J., … Walser, T. (2015). Scientific basis for regulatory decision-making of nanomaterials report on the workshop, 20–21 January 2014, center of applied ecotoxicology, Dübendorf. Chimia, 69(1-2), 52-56. https://doi.org/10.2533/chimia.2015.52