Active Filters

  • (-) Keywords = nanomedicine
  • (-) Empa Laboratories ≠ 506 Technology and Society
Search Results 1 - 17 of 17
  • RSS Feed
Select Page
Poly(ethyl ethylene phosphate): overcoming the "Polyethylene Glycol Dilemma" for cancer immunotherapy and mRNA vaccination
Yu, X., Li, H., Dong, C., Qi, S., Yang, K., Bai, B., … Yu, G. (2023). Poly(ethyl ethylene phosphate): overcoming the "Polyethylene Glycol Dilemma" for cancer immunotherapy and mRNA vaccination. ACS Nano, 17(23), 23814-23828. https://doi.org/10.1021/acsnano.3c07932
Tailoring design of nanomaterials and systems to individualize patient treatments
Buljan, M., & Wick, P. (2022). Tailoring design of nanomaterials and systems to individualize patient treatments. Chimia, 76(3), 236-241. https://doi.org/10.2533/chimia.2022.236
Future perspectives for advancing regulatory science of nanotechnology-enabled health products
Halamoda-Kenzaoui, B., Geertsma, R., Pouw, J., Prina-Mello, A., Carrer, M., Roesslein, M., … Bremer-Hoffmann, S. (2022). Future perspectives for advancing regulatory science of nanotechnology-enabled health products. Drug Delivery and Translational Research, 12, 2145-2156. https://doi.org/10.1007/s13346-022-01165-y
Research on nanoparticles in human perfused placenta: state of the art and perspectives
Aengenheister, L., Favaro, R. R., Morales-Prieto, D. M., Furer, L. A., Gruber, M., Wadsack, C., … Buerki-Thurnherr, T. (2021). Research on nanoparticles in human perfused placenta: state of the art and perspectives. Placenta, 104, 199-207. https://doi.org/10.1016/j.placenta.2020.12.014
Asymmetric-flow field-flow fractionation for measuring particle size, drug loading and (in)stability of nanopharmaceuticals. The joint view of European Union Nanomedicine Characterization Laboratory and National Cancer Institute - Nanotechnology Character
Caputo, F., Mehn, D., Clogston, J. D., Rösslein, M., Prina-Mello, A., Borgos, S. E., … Calzolai, L. (2021). Asymmetric-flow field-flow fractionation for measuring particle size, drug loading and (in)stability of nanopharmaceuticals. The joint view of European Union Nanomedicine Characterization Laboratory and National Cancer Institute - Nanotechnology Characterization Laboratory. Journal of Chromatography A, 1635, 461767 (12 pp.). https://doi.org/10.1016/j.chroma.2020.461767
Precision in thermal therapy: clinical requirements and solutions from nanotechnology
Gschwend, P. M., Hintze, J. M., Herrmann, I. K., Pratsinis, S. E., & Starsich, F. H. L. (2021). Precision in thermal therapy: clinical requirements and solutions from nanotechnology. Advanced Therapeutics, 4(2), 2000193 (13 pp.). https://doi.org/10.1002/adtp.202000193
Uniting drug and delivery: metal oxide hybrid nanotherapeutics for skin wound care
Matter, M. T., Probst, S., Läuchli, S., & Herrmann, I. K. (2020). Uniting drug and delivery: metal oxide hybrid nanotherapeutics for skin wound care. Pharmaceuticals, 12(8), 780 (17 pp.). https://doi.org/10.3390/pharmaceutics12080780
Emerging standards and analytical science for nanoenabled medical products
Nelson, B. C., Minelli, C., Doak, S. H., & Roesslein, M. (2020). Emerging standards and analytical science for nanoenabled medical products. Annual Review of Analytical Chemistry, 13(1), 431-452. https://doi.org/10.1146/annurev-anchem-091619-102216
Factors influencing safety and efficacy of intravenous iron-carbohydrate nanomedicines: from production to clinical practice
Nikravesh, N., Borchard, G., Hofmann, H., Philipp, E., Flühmann, B., & Wick, P. (2020). Factors influencing safety and efficacy of intravenous iron-carbohydrate nanomedicines: from production to clinical practice. Nanomedicine: Nanotechnology, Biology and Medicine, 26, 102178 (11 pp.). https://doi.org/10.1016/j.nano.2020.102178
Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity
Caputo, F., Clogston, J., Calzolai, L., Rösslein, M., & Prina-Mello, A. (2019). Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity. Journal of Controlled Release, 299, 31-43. https://doi.org/10.1016/j.jconrel.2019.02.030
Supramolecular insights into domino effects of Ag@ZnO-induced oxidative stress in melanoma cancer cells
Ghaemi, B., Moshiri, A., Herrmann, I. K., Hajipour, M. J., Wick, P., Amani, A., & Kharrazi, S. (2019). Supramolecular insights into domino effects of Ag@ZnO-induced oxidative stress in melanoma cancer cells. ACS Applied Materials and Interfaces, 11(15), 46408-46418. https://doi.org/10.1021/acsami.9b13420
Bridging communities in the field of nanomedicine
Halamoda-Kenzaoui, B., Baconnier, S., Bastogne, T., Bazile, D., Boisseau, P., Borchard, G., … Bremer-Hoffmann, S. (2019). Bridging communities in the field of nanomedicine. Regulatory Toxicology and Pharmacology, 106, 187-196. https://doi.org/10.1016/j.yrtph.2019.04.011
Engineered nanomaterials and human health: Part 2. Applications and nanotoxicology (IUPAC Technical Report)
Gubala, V., Johnston, L. J., Krug, H., Moore, C. J., Ober, C. K., Schwenk, M., & Vert, M. (2018). Engineered nanomaterials and human health: Part 2. Applications and nanotoxicology (IUPAC Technical Report). Pure and Applied Chemistry, 90(8), 1325-1356. https://doi.org/10.1515/pac-2017-0102
Preclinical hazard evaluation strategy for nanomedicines
Siegrist, S., Cörek, E., Detampel, P., Sandström, J., Wick, P., & Huwyler, J. (2018). Preclinical hazard evaluation strategy for nanomedicines. Nanotoxicology, 13(1), 73-99. https://doi.org/10.1080/17435390.2018.1505000
Sound understanding of environmental, health and safety, clinical, and market aspects is imperative to clinical translation of nanomedicines
Rösslein, M., Liptrott, N. J., Owen, A., Boisseau, P., Wick, P., & Herrmann, I. K. (2017). Sound understanding of environmental, health and safety, clinical, and market aspects is imperative to clinical translation of nanomedicines. Nanotoxicology, 11(2), 147-149. https://doi.org/10.1080/17435390.2017.1279361
Personalized medicine: the enabling role of nanotechnology
Herrmann, I. K., & Rösslein, M. (2016). Personalized medicine: the enabling role of nanotechnology. Nanomedicine, 11(1), 1-3. https://doi.org/10.2217/nnm.15.152
Determination of the transport rate of xenobiotics and nanomaterials across the placenta using the <I>ex vivo</I> human placental perfusion model
Grafmüller, S., Manser, P., Krug, H. F., Wick, P., & von Mandach, U. (2013). Determination of the transport rate of xenobiotics and nanomaterials across the placenta using the ex vivo human placental perfusion model. Journal of Visualized Experiments (76), e50401 (7 pp.). https://doi.org/10.3791/50401