Active Filters

  • (-) Keywords = nanomedicine
  • (-) Keywords ≠ bioengineering
Search Results 1 - 19 of 19
  • RSS Feed
Select Page
Poly(ethyl ethylene phosphate): overcoming the "Polyethylene Glycol Dilemma" for cancer immunotherapy and mRNA vaccination
Yu, X., Li, H., Dong, C., Qi, S., Yang, K., Bai, B., … Yu, G. (2023). Poly(ethyl ethylene phosphate): overcoming the "Polyethylene Glycol Dilemma" for cancer immunotherapy and mRNA vaccination. ACS Nano, 17(23), 23814-23828. https://doi.org/10.1021/acsnano.3c07932
Tailoring design of nanomaterials and systems to individualize patient treatments
Buljan, M., & Wick, P. (2022). Tailoring design of nanomaterials and systems to individualize patient treatments. Chimia, 76(3), 236-241. https://doi.org/10.2533/chimia.2022.236
Future perspectives for advancing regulatory science of nanotechnology-enabled health products
Halamoda-Kenzaoui, B., Geertsma, R., Pouw, J., Prina-Mello, A., Carrer, M., Roesslein, M., … Bremer-Hoffmann, S. (2022). Future perspectives for advancing regulatory science of nanotechnology-enabled health products. Drug Delivery and Translational Research, 12, 2145-2156. https://doi.org/10.1007/s13346-022-01165-y
Research on nanoparticles in human perfused placenta: state of the art and perspectives
Aengenheister, L., Favaro, R. R., Morales-Prieto, D. M., Furer, L. A., Gruber, M., Wadsack, C., … Buerki-Thurnherr, T. (2021). Research on nanoparticles in human perfused placenta: state of the art and perspectives. Placenta, 104, 199-207. https://doi.org/10.1016/j.placenta.2020.12.014
Asymmetric-flow field-flow fractionation for measuring particle size, drug loading and (in)stability of nanopharmaceuticals. The joint view of European Union Nanomedicine Characterization Laboratory and National Cancer Institute - Nanotechnology Character
Caputo, F., Mehn, D., Clogston, J. D., Rösslein, M., Prina-Mello, A., Borgos, S. E., … Calzolai, L. (2021). Asymmetric-flow field-flow fractionation for measuring particle size, drug loading and (in)stability of nanopharmaceuticals. The joint view of European Union Nanomedicine Characterization Laboratory and National Cancer Institute - Nanotechnology Characterization Laboratory. Journal of Chromatography A, 1635, 461767 (12 pp.). https://doi.org/10.1016/j.chroma.2020.461767
Precision in thermal therapy: clinical requirements and solutions from nanotechnology
Gschwend, P. M., Hintze, J. M., Herrmann, I. K., Pratsinis, S. E., & Starsich, F. H. L. (2021). Precision in thermal therapy: clinical requirements and solutions from nanotechnology. Advanced Therapeutics, 4(2), 2000193 (13 pp.). https://doi.org/10.1002/adtp.202000193
Risk management framework for nano-biomaterials used in medical devices and advanced therapy medicinal products
Giubilato, E., Cazzagon, V., Amorim, M. J. B., Blosi, M., Bouillard, J., Bouwmeester, H., … Hristozov, D. (2020). Risk management framework for nano-biomaterials used in medical devices and advanced therapy medicinal products. Materials, 13(20), 1-29. https://doi.org/10.3390/ma13204532
Uniting drug and delivery: metal oxide hybrid nanotherapeutics for skin wound care
Matter, M. T., Probst, S., Läuchli, S., & Herrmann, I. K. (2020). Uniting drug and delivery: metal oxide hybrid nanotherapeutics for skin wound care. Pharmaceuticals, 12(8), 780 (17 pp.). https://doi.org/10.3390/pharmaceutics12080780
Emerging standards and analytical science for nanoenabled medical products
Nelson, B. C., Minelli, C., Doak, S. H., & Roesslein, M. (2020). Emerging standards and analytical science for nanoenabled medical products. Annual Review of Analytical Chemistry, 13(1), 431-452. https://doi.org/10.1146/annurev-anchem-091619-102216
Factors influencing safety and efficacy of intravenous iron-carbohydrate nanomedicines: from production to clinical practice
Nikravesh, N., Borchard, G., Hofmann, H., Philipp, E., Flühmann, B., & Wick, P. (2020). Factors influencing safety and efficacy of intravenous iron-carbohydrate nanomedicines: from production to clinical practice. Nanomedicine: Nanotechnology, Biology and Medicine, 26, 102178 (11 pp.). https://doi.org/10.1016/j.nano.2020.102178
A methodological safe-by-design approach for the development of nanomedicines
Schmutz, M., Borges, O., Jesus, S., Borchard, G., Perale, G., Zinn, M., … Som, C. (2020). A methodological safe-by-design approach for the development of nanomedicines. Frontiers in Bioengineering and Biotechnology, 8, 258 (7 pp.). https://doi.org/10.3389/fbioe.2020.00258
Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity
Caputo, F., Clogston, J., Calzolai, L., Rösslein, M., & Prina-Mello, A. (2019). Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity. Journal of Controlled Release, 299, 31-43. https://doi.org/10.1016/j.jconrel.2019.02.030
Supramolecular insights into domino effects of Ag@ZnO-induced oxidative stress in melanoma cancer cells
Ghaemi, B., Moshiri, A., Herrmann, I. K., Hajipour, M. J., Wick, P., Amani, A., & Kharrazi, S. (2019). Supramolecular insights into domino effects of Ag@ZnO-induced oxidative stress in melanoma cancer cells. ACS Applied Materials and Interfaces, 11(15), 46408-46418. https://doi.org/10.1021/acsami.9b13420
Bridging communities in the field of nanomedicine
Halamoda-Kenzaoui, B., Baconnier, S., Bastogne, T., Bazile, D., Boisseau, P., Borchard, G., … Bremer-Hoffmann, S. (2019). Bridging communities in the field of nanomedicine. Regulatory Toxicology and Pharmacology, 106, 187-196. https://doi.org/10.1016/j.yrtph.2019.04.011
Engineered nanomaterials and human health: Part 2. Applications and nanotoxicology (IUPAC Technical Report)
Gubala, V., Johnston, L. J., Krug, H., Moore, C. J., Ober, C. K., Schwenk, M., & Vert, M. (2018). Engineered nanomaterials and human health: Part 2. Applications and nanotoxicology (IUPAC Technical Report). Pure and Applied Chemistry, 90(8), 1325-1356. https://doi.org/10.1515/pac-2017-0102
Preclinical hazard evaluation strategy for nanomedicines
Siegrist, S., Cörek, E., Detampel, P., Sandström, J., Wick, P., & Huwyler, J. (2018). Preclinical hazard evaluation strategy for nanomedicines. Nanotoxicology, 13(1), 73-99. https://doi.org/10.1080/17435390.2018.1505000
Sound understanding of environmental, health and safety, clinical, and market aspects is imperative to clinical translation of nanomedicines
Rösslein, M., Liptrott, N. J., Owen, A., Boisseau, P., Wick, P., & Herrmann, I. K. (2017). Sound understanding of environmental, health and safety, clinical, and market aspects is imperative to clinical translation of nanomedicines. Nanotoxicology, 11(2), 147-149. https://doi.org/10.1080/17435390.2017.1279361
Personalized medicine: the enabling role of nanotechnology
Herrmann, I. K., & Rösslein, M. (2016). Personalized medicine: the enabling role of nanotechnology. Nanomedicine, 11(1), 1-3. https://doi.org/10.2217/nnm.15.152
Probabilistic modelling of prospective environmental concentrations of gold nanoparticles from medical applications as a basis for risk assessment
Mahapatra, I., Sun, T. Y., Clark, J. R. A., Dobson, P. J., Hungerbuehler, K., Owen, R., … Lead, J. (2015). Probabilistic modelling of prospective environmental concentrations of gold nanoparticles from medical applications as a basis for risk assessment. Journal of Nanobiotechnology, 13, 93 (14 pp.). https://doi.org/10.1186/s12951-015-0150-0