Active Filters

  • (-) Keywords = nanoparticle
  • (-) Empa Authors ≠ Bahk, Yeon Kyoung
Search Results 1 - 20 of 31
Select Page
3D binary mesocrystals from anisotropic nanoparticles
Jenewein, C., Avaro, J., Appel, C., Liebi, M., & Cölfen, H. (2022). 3D binary mesocrystals from anisotropic nanoparticles. Angewandte Chemie International Edition, 61(2), e202112461 (8 pp.). https://doi.org/10.1002/anie.202112461
High-throughput sizing, counting, and elemental analysis of anisotropic multimetallic nanoparticles with single-particle inductively coupled plasma mass spectrometry
Koolen, C. D., Torrent, L., Agarwal, A., Meili-Borovinskaya, O., Gasilova, N., Li, M., … Züttel, A. (2022). High-throughput sizing, counting, and elemental analysis of anisotropic multimetallic nanoparticles with single-particle inductively coupled plasma mass spectrometry. ACS Nano, 16(8), 11968-11978. https://doi.org/10.1021/acsnano.2c01840
Adjustable film properties of cellulose nanofiber and cellulose nanocrystal composites
Pritchard, C. Q., Funk, G., Owens, J., Stutz, S., Gooneie, A., Sapkota, J., … Bortner, M. J. (2022). Adjustable film properties of cellulose nanofiber and cellulose nanocrystal composites. Carbohydrate Polymers, 286, 119283 (9 pp.). https://doi.org/10.1016/j.carbpol.2022.119283
Magnetocaloric effect of ball-milled CoMn<sub>0.95</sub>V<sub>0.05</sub>Ge nano-powders
Yildirim, O., Yüzüak, E., Tozkoporan, O., Dincer, I., & Duman, E. (2021). Magnetocaloric effect of ball-milled CoMn0.95V0.05Ge nano-powders. Journal of Magnetism and Magnetic Materials, 519, 167449 (6 pp.). https://doi.org/10.1016/j.jmmm.2020.167449
CO<sub>2</sub> hydrogenation over unsupported Fe-Co nanoalloy catalysts
Calizzi, M., Mutschler, R., Patelli, N., Migliori, A., Zhao, K., Pasquini, L., & Züttel, A. (2020). CO2 hydrogenation over unsupported Fe-Co nanoalloy catalysts. Nanomaterials, 10(7), 1360 (12 pp.). https://doi.org/10.3390/nano10071360
Safe(r) by design implementation in the nanotechnology industry
Sánchez Jiménez, A., Puelles, R., Pérez-Fernández, M., Gómez-Fernández, P., Barruetabeña, L., Jacobsen, N. R., … Rodríguez Llopis, I. (2020). Safe(r) by design implementation in the nanotechnology industry. NanoImpact, 20, 100267 (12 pp.). https://doi.org/10.1016/j.impact.2020.100267
Fate modelling of nanoparticle releases in LCA: an integrative approach towards “USEtox4Nano”
Salieri, B., Hischier, R., Quik, J. T. K., & Jolliet, O. (2019). Fate modelling of nanoparticle releases in LCA: an integrative approach towards “USEtox4Nano”. Journal of Cleaner Production, 206, 701-712. https://doi.org/10.1016/j.jclepro.2018.09.187
Cyclic uniaxial compression of human stem cells seeded on a bone biomimetic nanocomposite decreases anti-osteogenic commitment evoked by shear stress
Baumgartner, W., Schneider, I., Hess, S. C., Stark, W. J., Märsmann, S., Brunelli, M., … Buschmann, J. (2018). Cyclic uniaxial compression of human stem cells seeded on a bone biomimetic nanocomposite decreases anti-osteogenic commitment evoked by shear stress. Journal of the Mechanical Behavior of Biomedical Materials, 83, 84-93. https://doi.org/10.1016/j.jmbbm.2018.04.002
Engineered nanomaterials and human health: Part 1. Preparation, functionalization and characterization (IUPAC Technical Report)
Gubala, V., Johnston, L. J., Liu, Z., Krug, H., Moore, C. J., Ober, C. K., … Vert, M. (2018). Engineered nanomaterials and human health: Part 1. Preparation, functionalization and characterization (IUPAC Technical Report). Pure and Applied Chemistry, 90(8), 1283-1324. https://doi.org/10.1515/pac-2017-0101
Engineered nanomaterials and human health: Part 2. Applications and nanotoxicology (IUPAC Technical Report)
Gubala, V., Johnston, L. J., Krug, H., Moore, C. J., Ober, C. K., Schwenk, M., & Vert, M. (2018). Engineered nanomaterials and human health: Part 2. Applications and nanotoxicology (IUPAC Technical Report). Pure and Applied Chemistry, 90(8), 1325-1356. https://doi.org/10.1515/pac-2017-0102
Environmental risk assessment of engineered nano-SiO<sub><small>2</small></sub>, nano iron oxides, nano-CeO<sub><small>2</small></sub>, nano-Al<sub><small>2</small></sub>O<sub><small>3</small></sub>, and quantum dots
Wang, Y., & Nowack, B. (2018). Environmental risk assessment of engineered nano-SiO2, nano iron oxides, nano-CeO2, nano-Al2O3, and quantum dots. Environmental Toxicology and Chemistry, 37(5), 1387-1395. https://doi.org/10.1002/etc.4080
Measuring air borne nanoparticles for characterizing hyphenated RDD-SMPS-ICPMS instrumentation
Hess, A., Tarik, M., Losert, S., Ilari, G., & Ludwig, C. (2016). Measuring air borne nanoparticles for characterizing hyphenated RDD-SMPS-ICPMS instrumentation. Journal of Aerosol Science, 92, 130-141. https://doi.org/10.1016/j.jaerosci.2015.10.007
Rheology of titania based ceramic nanodispersions stabilized by cationic comb copolymers
Klimkevicius, V., Makuska, R., & Graule, T. (2016). Rheology of titania based ceramic nanodispersions stabilized by cationic comb copolymers. Applied Rheology, 26(1), 15199 (9 pp.). https://doi.org/10.3933/ApplRheol-26-15199
Macrophage polarization by titanium dioxide (TiO<SUB>2</SUB>) particles: size matters
Schoenenberger, A. D., Schipanski, A., Malheiro, V., Kucki, M., Snedeker, J. G., Wick, P., & Maniura-Weber, K. (2016). Macrophage polarization by titanium dioxide (TiO2) particles: size matters. ACS Biomaterials Science & Engineering, 2(6), 908-919. https://doi.org/10.1021/acsbiomaterials.6b00006
A hyphenated SMPS–ICPMS coupling setup: size-resolved element specific analysis of airborne nanoparticles
Hess, A., Tarik, M., & Ludwig, C. (2015). A hyphenated SMPS–ICPMS coupling setup: size-resolved element specific analysis of airborne nanoparticles. Journal of Aerosol Science, 88, 109-118. https://doi.org/10.1016/j.jaerosci.2015.05.016
Aerosol emission monitoring and assessment of potential exposure to multi-walled carbon nanotubes in the manufacture of polymer nanocomposites
Thompson, D., Chen, S. C., Wang, J., & Pui, D. Y. H. (2015). Aerosol emission monitoring and assessment of potential exposure to multi-walled carbon nanotubes in the manufacture of polymer nanocomposites. Annals of Occupational Hygiene, 59(9), 1135-1151. https://doi.org/10.1093/annhyg/mev044
Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA)
Hole, P., Sillence, K., Hannell, C., Maguire, C. M., Roesslein, M., Suarez, G., … Wick, P. (2013). Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). Journal of Nanoparticle Research, 15(12), 2101 (12 pp.). https://doi.org/10.1007/s11051-013-2101-8
Integrative filtration research and sustainable nanotechnology
Wang, J., Thompson, D., & Pui, D. Y. H. (2013). Integrative filtration research and sustainable nanotechnology. Particuology, 11(1), 5-13. https://doi.org/10.1016/j.partic.2012.06.004
Numerical modeling of nanoparticle penetration through personal protective garments
Ling, T. Y., Wang, J., & Pui, D. Y. H. (2012). Numerical modeling of nanoparticle penetration through personal protective garments. Separation and Purification Technology, 98(1), 230-239. https://doi.org/10.1016/j.seppur.2012.07.015
Selenization of nanoparticle precursor layers for Cu(In,Ga)Se<sub>2</sub> absorbers
Uhl, A. R., Wallerand, A. S., Koller, M., Fella, C. M., Romanyuk, Y. E., Tiwari, A. N., … Stassin, F. (2012). Selenization of nanoparticle precursor layers for Cu(In,Ga)Se2 absorbers. In EU PVSEC 2012 proceedings (pp. 2318-2320). https://doi.org/10.4229/27thEUPVSEC2012-3CV.1.36