Active Filters

  • (-) Keywords = nanotechnology
  • (-) Empa Authors ≠ Köhler, Andreas R.
Search Results 1 - 20 of 40
Select Page
Nanothermometry-enabled intelligent laser tissue soldering
Cipolato, O., Dosnon, L., Rosendorf, J., Sarcevic, S., Zäch, M., Bondi, A., … Herrmann, I. K. (2023). Nanothermometry-enabled intelligent laser tissue soldering. Small Methods, 7(11), 2300693 (14 pp.). https://doi.org/10.1002/smtd.202300693
Lab-on-a-fiber wearable multi-sensor for monitoring wound healing
Giovannini, G., Sharma, K., Boesel, L. F., & Rossi, R. M. (2023). Lab-on-a-fiber wearable multi-sensor for monitoring wound healing. Advanced Healthcare Materials. https://doi.org/10.1002/adhm.202302603
(Re)Conceptualizing decision-making tools in a risk governance framework for emerging technologies - the case of nanomaterials
Mullins, M., Himly, M., Rodríguez Llopis, I., Furxhi, I., Hofer, S., Hofstätter, N., … Drobne, D. (2023). (Re)Conceptualizing decision-making tools in a risk governance framework for emerging technologies - the case of nanomaterials. Environment Systems and Decisions, 43(2), 3-15. https://doi.org/10.1007/s10669-022-09870-2
Antibiofilm activity of nanosilver coatings against <em>Staphylococcus aureus</em>
Geissel, F. J., Platania, V., Gogos, A., Herrmann, I. K., Belibasakis, G. N., Chatzinikolaidou, M., & Sotiriou, G. A. (2022). Antibiofilm activity of nanosilver coatings against Staphylococcus aureus. Journal of Colloid and Interface Science, 608, 3141-3150. https://doi.org/10.1016/j.jcis.2021.11.038
Precision in thermal therapy: clinical requirements and solutions from nanotechnology
Gschwend, P. M., Hintze, J. M., Herrmann, I. K., Pratsinis, S. E., & Starsich, F. H. L. (2021). Precision in thermal therapy: clinical requirements and solutions from nanotechnology. Advanced Therapeutics, 4(2), 2000193 (13 pp.). https://doi.org/10.1002/adtp.202000193
Editorial: Polymeric nano-biomaterials for medical applications: advancements in developing and implementation considering safety-by-design concepts
Borchard, G., Som, C., Zinn, M., Ostafe, V., Borges, O., Perale, G., & Wick, P. (2020). Editorial: Polymeric nano-biomaterials for medical applications: advancements in developing and implementation considering safety-by-design concepts. Frontiers in Bioengineering and Biotechnology, 8, 599950 (2 pp.). https://doi.org/10.3389/fbioe.2020.599950
Safe(r) by design implementation in the nanotechnology industry
Sánchez Jiménez, A., Puelles, R., Pérez-Fernández, M., Gómez-Fernández, P., Barruetabeña, L., Jacobsen, N. R., … Rodríguez Llopis, I. (2020). Safe(r) by design implementation in the nanotechnology industry. NanoImpact, 20, 100267 (12 pp.). https://doi.org/10.1016/j.impact.2020.100267
Joining technology innovations at the macro, micro, and nano levels
Hu, A., Janczak-Rusch, J., & Sano, T. (2019). Joining technology innovations at the macro, micro, and nano levels. Applied Sciences, 9(17), 3568 (9 pp.). https://doi.org/10.3390/app9173568
Conductivity image characterization of gold nanoparticles based-device through atomic force microscopy
Lay-Ekuakille, A., Spano, F., Kapita Mvemba, P., Massaro, A., Galiano, A., Casciaro, S., & Conversano, F. (2019). Conductivity image characterization of gold nanoparticles based-device through atomic force microscopy. In H. Ponce, R. Velázquez, & Z. Wang (Eds.), 2018 Nanotechnology for Instrumentation and Measurement (NANOfIM) (p. (6 pp.). https://doi.org/10.1109/NANOFIM.2018.8688617
Joining with reactive nano-multilayers: influence of thermal properties of components on joint microstructure and mechanical performance
Rheingans, B., Spies, I., Schumacher, A., Knappmann, S., Furrer, R., Jeurgens, L. P. H., & Janczak-Rusch, J. (2019). Joining with reactive nano-multilayers: influence of thermal properties of components on joint microstructure and mechanical performance. Applied Sciences, 9(2), 262 (11 pp.). https://doi.org/10.3390/app9020262
Bioinspired wood nanotechnology for functional materials
Berglund, L. A., & Burgert, I. (2018). Bioinspired wood nanotechnology for functional materials. Advanced Materials, 30(19), 1704285 (15 pp.). https://doi.org/10.1002/adma.201704285
Sensing system for cystic fibrosis: modeling the detection and characterization of sweat
Lay-Ekuakille, A., Griffo, G., Morello, R., De Capua, C., & Spano, F. (2017). Sensing system for cystic fibrosis: modeling the detection and characterization of sweat. In 2017 IEEE international symposium on medical measurements and applications (MeMeA) (pp. 287-291). https://doi.org/10.1109/MeMeA.2017.7985890
The need for a life-cycle based aging paradigm for nanomaterials: importance of real-world test systems to identify realistic particle transformations
Mitrano, D. M., & Nowack, B. (2017). The need for a life-cycle based aging paradigm for nanomaterials: importance of real-world test systems to identify realistic particle transformations. Nanotechnology, 28(7), 072001 (23 pp.). https://doi.org/10.1088/1361-6528/28/7/072001
DaNa 2.0 ― verlässliche Informationen zur Sicherheit von marktüblichen Nanomaterialien. DaNa 2.0 ― reliable information on the safety of commercially available nanomaterials
Steinbach, C., Bohmer, N., Krug, H. F., Kühnel, D., Nau, K., Paul, F., … Marquardt, C. (2017). DaNa 2.0 ― verlässliche Informationen zur Sicherheit von marktüblichen Nanomaterialien. DaNa 2.0 ― reliable information on the safety of commercially available nanomaterials. Chemie Ingenieur Technik, 89(3), 232-238. https://doi.org/10.1002/cite.201600074
Boron nitride nanoporous membranes with high surface charge by atomic layer deposition
Weber, M., Koonkaew, B., Balme, S., Utke, I., Picaud, F., Iatsunskyi, I., … Bechelany, M. (2017). Boron nitride nanoporous membranes with high surface charge by atomic layer deposition. ACS Applied Materials and Interfaces, 9(19), 16669-16678. https://doi.org/10.1021/acsami.7b02883
EEG signal processing and acquisition for detecting abnormalities via bio-implantable devices
Lay-Ekuakille, A., Griffo, G., Conversano, F., Casciaro, S., Massaro, A., Bhateja, V., & Spano, F. (2016). EEG signal processing and acquisition for detecting abnormalities via bio-implantable devices. In 2016 IEEE international conference on medical measurements and applications (MeMeA) (p. 7533752 (5 pp.). https://doi.org/10.1109/MeMeA.2016.7533752
Implantable neurorecording sensing system: wireless transmission of measurements
Lay-Ekuakille, A., Griffo, G., Vergallo, P., Massaro, A., Spano, F., & Gigli, G. (2015). Implantable neurorecording sensing system: wireless transmission of measurements. IEEE Sensors Journal, 15(5), 2603-2613. https://doi.org/10.1109/Jsen.2015.2406761
Addition of nanoscaled bioinspired surface features: a revolution for bone-related implants and scaffolds?
Bruinink, A., Bitar, M., Pleskova, M., Wick, P., Krug, H. F., & Maniura-Weber, K. (2014). Addition of nanoscaled bioinspired surface features: a revolution for bone-related implants and scaffolds? Journal of Biomedical Materials Research. Part A, 102A(1), 275-294. https://doi.org/10.1002/jbm.a.34691
Framework for LCI modelling of releases of manufactured nanomaterials along their life cycle
Hischier, R. (2014). Framework for LCI modelling of releases of manufactured nanomaterials along their life cycle. International Journal of Life Cycle Assessment, 19(4), 838-849. https://doi.org/10.1007/s11367-013-0688-8
Nanosafety research—are we on the right track?
Krug, H. F. (2014). Nanosafety research—are we on the right track? Angewandte Chemie International Edition, 53(46), 12304-12319. https://doi.org/10.1002/anie.201403367