| Colloidal aziridinium lead bromide quantum dots
Bodnarchuk, M. I., Feld, L. G., Zhu, C., Boehme, S. C., Bertolotti, F., Avaro, J., … Kovalenko, M. V. (2024). Colloidal aziridinium lead bromide quantum dots. ACS Nano, 18, 5684-5697. https://doi.org/10.1021/acsnano.3c11579 |
| Quantifying Förster resonance energy transfer from single perovskite quantum dots to organic dyes
Feld, L. G., Boehme, S. C., Morad, V., Sahin, Y., Kaul, C. J., Dirin, D. N., … Kovalenko, M. V. (2024). Quantifying Förster resonance energy transfer from single perovskite quantum dots to organic dyes. ACS Nano, 18(14), 9997-10007. https://doi.org/10.1021/acsnano.3c11359 |
| Pizza oven processing of organohalide perovskites (POPOP): a simple, versatile and efficient vapor deposition method
Guesnay, Q., Sahli, F., Artuk, K., Turkay, D., Kuba, A. G., Mrkyvkova, N., … Wolff, C. M. (2024). Pizza oven processing of organohalide perovskites (POPOP): a simple, versatile and efficient vapor deposition method. Advanced Energy Materials, 14(10), 2303423 (11 pp.). https://doi.org/10.1002/aenm.202303423 |
| Circularly polarized luminescence without external magnetic fields from individual CsPbBr<sub>3</sub> perovskite quantum dots
Oddi, V., Zhu, C., Becker, M. A., Sahin, Y., Dirin, D. N., Kim, T., … Stöferle, T. (2024). Circularly polarized luminescence without external magnetic fields from individual CsPbBr3 perovskite quantum dots. ACS Nano, 18, 17218-17227. https://doi.org/10.1021/acsnano.4c04392 |
| Enhancing the stability of perovskite nanocrystals in polyacrylate composites
Skrypnyk, T., Bespalova, I., Boesel, L., & Sorokin, O. (2024). Enhancing the stability of perovskite nanocrystals in polyacrylate composites. Functional Materials, 31(2), 252-259. https://doi.org/10.15407/fm31.02.252 |
| Exploring enhanced structural and dielectric properties in Ag-Doped Sr(NiNb)<sub>0.5</sub>O<sub>3</sub> perovskite ceramic for advanced energy storage
Tayari, F., Benamara, M., Lal, M., Essid, M., Thakur, P., Kumar, D., … Nassar, K. I. (2024). Exploring enhanced structural and dielectric properties in Ag-Doped Sr(NiNb)0.5O3 perovskite ceramic for advanced energy storage. Ceramics, 7(3), 958-974. https://doi.org/10.3390/ceramics7030062 |
| Sol–gel synthesized (Bi<sub>0.5</sub>Ba<sub>0.5</sub>Ag)<sub>0.5</sub> (NiMn)<sub>0.5</sub>O<sub>3</sub> perovskite ceramic: an exploration of its structural characteristics, dielectric properties and electrical conductivity
Tayari, F., Iben Nassar, K., Benamara, M., Essid, M., Soreto Teixeira, S., & Graça, M. P. F. (2024). Sol–gel synthesized (Bi0.5Ba0.5Ag)0.5 (NiMn)0.5O3 perovskite ceramic: an exploration of its structural characteristics, dielectric properties and electrical conductivity. Ceramics International, 50(7 Part A), 11207-11215. https://doi.org/10.1016/j.ceramint.2024.01.022 |
| Ligand effects in assembly of cubic and spherical nanocrystals: applications to packing of perovskite nanocubes
Hallstrom, J., Cherniukh, I., Zha, X., Kovalenko, M. V., & Travesset, A. (2023). Ligand effects in assembly of cubic and spherical nanocrystals: applications to packing of perovskite nanocubes. ACS Nano, 17(8), 7219-7228. https://doi.org/10.1021/acsnano.2c10079 |
| Time dependent deformation of LaCoO<sub>3</sub> based perovskites at different temperatures: ferroelastic and non-ferroelastic creep behaviour
Lugovy, M., Bondar, M., Orlovskaya, N., Reece, M. J., Graule, T., & Blugan, G. (2023). Time dependent deformation of LaCoO3 based perovskites at different temperatures: ferroelastic and non-ferroelastic creep behaviour. Advances in Applied Ceramics, 122(5-8), 295-310. https://doi.org/10.1080/17436753.2023.2262277 |
| Air-sensitive amplified spontaneous emission in lecithin-capped CsPbBr<sub>3</sub> nanocrystals thin films
Milanese, S., Morello, G., De Giorgi, M. L., Cretì, A., Andrusiv, H., Bodnarchuk, M. I., … Anni, M. (2023). Air-sensitive amplified spontaneous emission in lecithin-capped CsPbBr3 nanocrystals thin films. Materials Today Physics, 35, 101098 (8 pp.). https://doi.org/10.1016/j.mtphys.2023.101098 |
| Improvement of perovskite nanocrystals stability by incorporation into polymer cross-linked systems
Skrypnyk, T., Bespalova, I., Bodnarchuk, M., Boesel, L., & Kovalenko, M. (2023). Improvement of perovskite nanocrystals stability by incorporation into polymer cross-linked systems. In Proceedings of the 2023 IEEE 13th international conference nanomaterials: applications & properties (IEEE NAP-2023) (pp. NEE031-NEE035). https://doi.org/10.1109/NAP59739.2023.10310688 |
| Aging and characterization of high-bandgap perovskites for all thinfilm tandem solar cell devices
Vidani, A. C., Jenatsch, S., Kothandraman, R., Fu, F., Gadola, A., Zuefle, S., & Ruhstaller, B. (2023). Aging and characterization of high-bandgap perovskites for all thinfilm tandem solar cell devices. In G. Li, N. Stingelin, A. F. Nogueira, T. Q. Nguyen, E. Moons, & B. P. Rand (Eds.), Proceedings of SPIE - the international society for optical engineering: Vol. 12660. Organic, hybrid, and perovskite photovoltaics (p. 1266006 (9 pp.). https://doi.org/10.1117/12.2676914 |
| High-performance flexible all-perovskite tandem solar cells with reduced V<sub>OC</sub>-deficit in wide-bandgap subcell
Lai, H., Luo, J., Zwirner, Y., Olthof, S., Wieczorek, A., Ye, F., … Fu, F. (2022). High-performance flexible all-perovskite tandem solar cells with reduced VOC-deficit in wide-bandgap subcell. Advanced Energy Materials, 12(45), 2202438 (12 pp.). https://doi.org/10.1002/aenm.202202438 |
| Understanding the formation process of perovskite layers grown by chemical vapour deposition
Moser, T., Kothandaraman, R., Yang, S., Walter, A., Siegrist, S., Lai, H., … Fu, F. (2022). Understanding the formation process of perovskite layers grown by chemical vapour deposition. Frontiers in Energy Research, 10, 883882 (11 pp.). https://doi.org/10.3389/fenrg.2022.883882 |
| Inductive and capacitive hysteresis of halide perovskite solar cells and memristors under illumination
Munoz-Diaz, L., Rosa, A. J., Bou, A., Sánchez, R. S., Romero, B., John, R. A., … Bisquert, J. (2022). Inductive and capacitive hysteresis of halide perovskite solar cells and memristors under illumination. Frontiers in Energy Research, 10, 914115 (15 pp.). https://doi.org/10.3389/fenrg.2022.914115 |
| Trap passivation and suppressed electrochemical dynamics in perovskite solar cells with C<sub>60</sub> interlayers
Tulus, Muscarella, L. A., Galagan, Y., Boehme, S. C., & von Hauff, E. (2022). Trap passivation and suppressed electrochemical dynamics in perovskite solar cells with C60 interlayers. Electrochimica Acta, 433, 141215 (10 pp.). https://doi.org/10.1016/j.electacta.2022.141215 |
| Reduced barrier for ion migration in mixed-halide perovskites
McGovern, L., Grimaldi, G., Futscher, M. H., Hutter, E. M., Muscarella, L. A., Schmidt, M. C., & Ehrler, B. (2021). Reduced barrier for ion migration in mixed-halide perovskites. ACS Applied Energy Materials, 4(12), 13431-13437. https://doi.org/10.1021/acsaem.1c03095 |
| Pressure-induced perovskite-to-non-perovskite phase transition in CsPbBr<sub>3</sub>
Noculak, A., Boehme, S. C., Aebli, M., Shynkarenko, Y., McCall, K. M., & Kovalenko, M. V. (2021). Pressure-induced perovskite-to-non-perovskite phase transition in CsPbBr3. Helvetica Chimica Acta, 104(2), e2000222 (8 pp.). https://doi.org/10.1002/hlca.202000222 |
| White CsPbBr<sub>3</sub>: characterizing the one-dimensional cesium lead bromide polymorph
Aebli, M., Benin, B. M., McCall, K. M., Morad, V., Thöny, D., Grützmacher, H., & Kovalenko, M. V. (2020). White CsPbBr3: characterizing the one-dimensional cesium lead bromide polymorph. Helvetica Chimica Acta, 103(7), e2000080 (8 pp.). https://doi.org/10.1002/hlca.202000080 |
| High-mobility In<sub>2</sub>O<sub>3</sub>:H electrodes for four-terminal perovskite/CuInSe<sub>2</sub> tandem solar cells
Jiang, Y., Feurer, T., Carron, R., Torres Sevilla, G., Moser, T., Pisoni, S., … Fu, F. (2020). High-mobility In2O3:H electrodes for four-terminal perovskite/CuInSe2 tandem solar cells. ACS Nano, 14(6), 7502-7512. https://doi.org/10.1021/acsnano.0c03265 |