Active Filters

  • (-) Keywords = phase transformation
Search Results 1 - 18 of 18
  • RSS Feed
Select Page
Wire and arc additive manufacturing of Fe-based shape memory alloys: microstructure, mechanical and functional behavior
Felice, I. O., Shen, J., Barragan, A. F. C., Moura, I. A. B., Li, B., Wang, B., … Oliveira, J. P. (2023). Wire and arc additive manufacturing of Fe-based shape memory alloys: microstructure, mechanical and functional behavior. Materials and Design, 231, 112004 (15 pp.). https://doi.org/10.1016/j.matdes.2023.112004
Shape memory alloys for structural engineering: an editorial overview of research and future potentials
Ghafoori, E., Wang, B., & Andrawes, B. (2022). Shape memory alloys for structural engineering: an editorial overview of research and future potentials. Engineering Structures, 273, 115138 (5 pp.). https://doi.org/10.1016/j.engstruct.2022.115138
Effect of post-heat treatment conditions on shape memory property in 4D printed Fe-17Mn-5Si-10Cr-4Ni shape memory alloy
Kim, D., Ferretto, I., Kim, W., Leinenbach, C., & Lee, W. (2022). Effect of post-heat treatment conditions on shape memory property in 4D printed Fe-17Mn-5Si-10Cr-4Ni shape memory alloy. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 852, 143689 (11 pp.). https://doi.org/10.1016/j.msea.2022.143689
Formation of metastable bcc-δ phase and its transformation to fcc-γ in laser powder bed fusion of Fe–Mn–Si shape memory alloy
Kim, D., Ferretto, I., Jeon, J. B., Leinenbach, C., & Lee, W. (2021). Formation of metastable bcc-δ phase and its transformation to fcc-γ in laser powder bed fusion of Fe–Mn–Si shape memory alloy. Journal of Materials Research and Technology, 14, 2782-2788. https://doi.org/10.1016/j.jmrt.2021.08.119
Iron-based shape memory alloy for strengthening of 113-year bridge
Vůjtěch, J., Ryjáček, P., Campos Matos, J., & Ghafoori, E. (2021). Iron-based shape memory alloy for strengthening of 113-year bridge. Engineering Structures, 248, 113231 (15 pp.). https://doi.org/10.1016/j.engstruct.2021.113231
Effect of phase changes on the axial modulus of an FeMnSi-shape memory alloy
Yang, Y., Breveglieri, M., & Shahverdi, M. (2021). Effect of phase changes on the axial modulus of an FeMnSi-shape memory alloy. Materials, 14(17), 4815 (13 pp.). https://doi.org/10.3390/ma14174815
Optimization of the calcination temperature for the solvent-deficient synthesis of nanocrystalline gamma-alumina
Ivas, T., Balaban, M., Dosen, V., Miyawaki, J., Ito, K., Vrankovic, D., … Zeljkovic, S. (2019). Optimization of the calcination temperature for the solvent-deficient synthesis of nanocrystalline gamma-alumina. Chemical Papers, 73(4), 901-907. https://doi.org/10.1007/s11696-018-0637-x
Development of an iron-based shape memory alloy (Fe-SMA) strengthening system for steel plates
Izadi, M. R., Ghafoori, E., Shahverdi, M., Motavalli, M., & Maalek, S. (2018). Development of an iron-based shape memory alloy (Fe-SMA) strengthening system for steel plates. Engineering Structures, 174, 433-446. https://doi.org/10.1016/j.engstruct.2018.07.073
Iron-based shape memory alloy for the fatigue strengthening of cracked steel plates: effects of re-activations and loading frequencies
Izadi, M. R., Ghafoori, E., Motavalli, M., & Maalek, S. (2018). Iron-based shape memory alloy for the fatigue strengthening of cracked steel plates: effects of re-activations and loading frequencies. Engineering Structures, 176, 953-967. https://doi.org/10.1016/j.engstruct.2018.09.021
Fatigue behavior of a Fe-Mn-Si shape memory alloy used for prestressed strengthening
Ghafoori, E., Hosseini, E., Leinenbach, C., Michels, J., & Motavalli, M. (2017). Fatigue behavior of a Fe-Mn-Si shape memory alloy used for prestressed strengthening. Materials and Design, 133, 349-362. https://doi.org/10.1016/j.matdes.2017.07.055
Influence of Nb and Mo on microstructure formation of rapidly solidified ternary Ti–Al-(Nb, Mo) alloys
Kenel, C., & Leinenbach, C. (2016). Influence of Nb and Mo on microstructure formation of rapidly solidified ternary Ti–Al-(Nb, Mo) alloys. Intermetallics, 69, 82-89. https://doi.org/10.1016/j.intermet.2015.10.018
Characterisation of thermal influences after laser processing polycrystalline diamond composites using long to ultrashort pulse durations
Eberle, G., Jefimovs, K., & Wegener, K. (2015). Characterisation of thermal influences after laser processing polycrystalline diamond composites using long to ultrashort pulse durations. Precision Engineering, 39(2), 16-24. https://doi.org/10.1016/j.precisioneng.2014.06.008
Enhanced structural and phase stability of titania inverse opals
Pasquarelli, R. M., Lee, H. S., Kubrin, R., Zierold, R., Petrov, A. Y., Nielsch, K., … Janssen, R. (2015). Enhanced structural and phase stability of titania inverse opals. Journal of the European Ceramic Society, 35(11), 3103-3109. https://doi.org/10.1016/j.jeurceramsoc.2015.04.041
Orientation dependence of stress-induced phase transformation and dislocation plasticity in NiTi shape memory alloys on the micro scale
Pfetzing-Micklich, J., Ghisleni, R., Simon, T., Somsen, C., Michler, J., & Eggeler, G. (2012). Orientation dependence of stress-induced phase transformation and dislocation plasticity in NiTi shape memory alloys on the micro scale. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 538, 265-271. https://doi.org/10.1016/j.msea.2012.01.042
Nanomechanical responses of intermetallic phase at the solder joint interface - crystal orientation and metallurgical effects
Song, J. M., Huang, B. R., Liu, C. Y., Lai, Y. S., Chiu, Y. T., & Huang, T. W. (2012). Nanomechanical responses of intermetallic phase at the solder joint interface - crystal orientation and metallurgical effects. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 534, 53-59. https://doi.org/10.1016/j.msea.2011.11.037
Nanoindentation of palladium–hydrogen
Wheeler, J. M., & Clyne, T. W. (2012). Nanoindentation of palladium–hydrogen. International Journal of Hydrogen Energy, 37(19), 14315-14322. https://doi.org/10.1016/j.ijhydene.2012.07.054
Determination of liquidus temperature in Ti-rich alloys of the Fe-Ni-Ti system obtained by DTA, electrical conductivity and XRD measurements
Duarte, L. I., Leinenbach, C., Wang, J., Plevachuk, Y., Sklyarchuk, V., Korolyshyn, A., … Löffler, J. F. (2011). Determination of liquidus temperature in Ti-rich alloys of the Fe-Ni-Ti system obtained by DTA, electrical conductivity and XRD measurements. International Journal of Materials Research, 102(3), 248-256. https://doi.org/10.3139/146.110486
Hydrogen sorption properties of MgH<SUB>2</SUB>-LiBH<SUB>4</SUB> composites
Bösenberg, U., Doppiu, S., Mosegaard, L., Barkhordarian, G., Eigen, N., Borgschulte, A., … Bormann, R. (2007). Hydrogen sorption properties of MgH2-LiBH4 composites. Acta Materialia, 55(11), 3951-3958. https://doi.org/10.1016/j.actamat.2007.03.010