Active Filters

  • (-) Keywords = photoelectron spectroscopy
Search Results 1 - 8 of 8
  • RSS Feed
Select Page
Hard x-ray photoelectron spectroscopy: a snapshot of the state-of-the-art in 2020
Kalha, C., Fernando, N. K., Bhatt, P., Johansson, F. O. L., Lindblad, A., Rensmo, H., … Regoutz, A. (2021). Hard x-ray photoelectron spectroscopy: a snapshot of the state-of-the-art in 2020. Journal of Physics: Condensed Matter, 33(23), 233001 (44 pp.). https://doi.org/10.1088/1361-648X/abeacd
Stabilization of wide band-gap p-type wurtzite MnTe thin films on amorphous substrates
Siol, S., Han, Y., Mangum, J., Schulz, P., Holder, A. M., Klein, T. R., … Zakutayev, A. (2018). Stabilization of wide band-gap p-type wurtzite MnTe thin films on amorphous substrates. Journal of Materials Chemistry C, 6(23), 6297-6304. https://doi.org/10.1039/C8TC01828F
Formation of a K—In—Se surface species by NaF/KF postdeposition treatment of CU(In,Ga)Se<SUB>2</SUB> thin-film solar cell absorbers
Handick, E., Reinhard, P., Wilks, R. G., Pianezzi, F., Kunze, T., Kreikemeyer-Lorenzo, D., … Bär, M. (2017). Formation of a K—In—Se surface species by NaF/KF postdeposition treatment of CU(In,Ga)Se2 thin-film solar cell absorbers. ACS Applied Materials and Interfaces, 9(4), 3581-3589. https://doi.org/10.1021/acsami.6b11892
Elucidating the thermal decomposition of dimethyl methyl phosphonate by Vacuum Ultraviolet (VUV) photoionization: pathways to the PO radical, a key species in flame-retardant mechanisms
Liang, S., Hemberger, P., Neisius, N. M., Bodi, A., Grützmacher, H., Levalois-Grützmacher, J., & Gaan, S. (2015). Elucidating the thermal decomposition of dimethyl methyl phosphonate by Vacuum Ultraviolet (VUV) photoionization: pathways to the PO radical, a key species in flame-retardant mechanisms. Chemistry: A European Journal, 21(3), 1073-1080. https://doi.org/10.1002/chem.201404271
Electronic structure of atomically precise graphene nanoribbons
Ruffieux, P., Cai, J., Plumb, N. C., Patthey, L., Prezzi, D., Ferretti, A., … Fasel, R. (2012). Electronic structure of atomically precise graphene nanoribbons. ACS Nano, 6(8), 6930-6935. https://doi.org/10.1021/nn3021376
Hydrogen dissociation on oxide covered MgH<SUB>2</SUB> by catalytically active vacancies
Borgschulte, A., Bielmann, M., Züttel, A., Barkhordarian, G., Dornheim, M., & Bormann, R. (2008). Hydrogen dissociation on oxide covered MgH2 by catalytically active vacancies. Applied Surface Science, 254(8), 2377-2384. https://doi.org/10.1016/j.apsusc.2007.09.069
X-ray photoelectron diffraction on the 6-fold (001) <I>μ</I>-Al<SUB>4</SUB>Mn approximant surface
Widmer, R., Maeder, R., Heggen, M., Feuerbacher, M., & Gröning, O. (2008). X-ray photoelectron diffraction on the 6-fold (001) μ-Al4Mn approximant surface. Philosophical Magazine, 88(13-15), 2095-2102. https://doi.org/10.1080/14786430701846222
Temperature dependence of electron-to-lattice energy transfer in single-wall carbon nanotube bundles
Moos, G., Fasel, R., & Hertel, T. (2003). Temperature dependence of electron-to-lattice energy transfer in single-wall carbon nanotube bundles. Journal of Nanoscience and Nanotechnology, 3(1-2), 145-149. https://doi.org/10.1166/jnn.2003.163