Active Filters

  • (-) Keywords = photovoltaics
  • (-) Journal ≠ Solar Energy
Search Results 1 - 17 of 17
  • RSS Feed
Select Page
A universal perovskite/C60 interface modification via atomic layer deposited aluminum oxide for perovskite solar cells and perovskite–silicon tandems
Artuk, K., Turkay, D., Mensi, M. D., Steele, J. A., Jacobs, D. A., Othman, M., … Wolff, C. M. (2024). A universal perovskite/C60 interface modification via atomic layer deposited aluminum oxide for perovskite solar cells and perovskite–silicon tandems. Advanced Materials. https://doi.org/10.1002/adma.202311745
Pizza oven processing of organohalide perovskites (POPOP): a simple, versatile and efficient vapor deposition method
Guesnay, Q., Sahli, F., Artuk, K., Turkay, D., Kuba, A. G., Mrkyvkova, N., … Wolff, C. M. (2024). Pizza oven processing of organohalide perovskites (POPOP): a simple, versatile and efficient vapor deposition method. Advanced Energy Materials, 2303423 (11 pp.). https://doi.org/10.1002/aenm.202303423
Flexibility implications of optimal PV design: building vs. community scale
Li, Q., Vulic, N., Cai, H., & Heer, P. (2023). Flexibility implications of optimal PV design: building vs. community scale. In Journal of physics: conference series: Vol. 2600. Optimization at building & urban scale (p. 082002 (7 pp.). https://doi.org/10.1088/1742-6596/2600/8/082002
Carrier generation and collection in Zn<sub>3</sub>P<sub>2</sub>/InP heterojunction solar cells
Paul, R., Tabernig, S. W., Reñé Sapera, J., Hurni, J., Tiede, A., Liu, X., … Fontcuberta i Morral, A. (2023). Carrier generation and collection in Zn3P2/InP heterojunction solar cells. Solar Energy Materials and Solar Cells, 256, 112349 (9 pp.). https://doi.org/10.1016/j.solmat.2023.112349
Understanding the growth mechanism of BaZrS<sub>3</sub> chalcogenide perovskite thin films from sulfurized oxide precursors
Ramanandan, S. P., Giunto, A., Stutz, E. Z., Reynier, B., Lefevre, I. T. F. M., Rusu, M., … Dimitrievska, M. (2023). Understanding the growth mechanism of BaZrS3 chalcogenide perovskite thin films from sulfurized oxide precursors. Journal of Physics: Energy, 5(1), 014013 (14 pp.). https://doi.org/10.1088/2515-7655/aca9fe
Editorial: Frontiers in Energy Research: rising stars
Dong, Z. Y., Zhang, S. S., Revankar, S. T., Park, A. H. A., Borgschulte, A., Toney, M. F., & Schröder, U. (2022). Editorial: Frontiers in Energy Research: rising stars. Frontiers in Energy Research, 10, 934319 (2 pp.). https://doi.org/10.3389/fenrg.2022.934319
State of the art and prospects for halide perovskite nanocrystals
Dey, A., Ye, J., De, A., Debroye, E., Ha, S. K., Bladt, E., … Polavarapu, L. (2021). State of the art and prospects for halide perovskite nanocrystals. ACS Nano, 15(7), 10775-10981. https://doi.org/10.1021/acsnano.0c08903
Mixed Conductivity of hybrid halide perovskites: emerging opportunities and challenges
Futscher, M. H., & Milić, J. V. (2021). Mixed Conductivity of hybrid halide perovskites: emerging opportunities and challenges. Frontiers in Energy Research, 9, 629074 (9 pp.). https://doi.org/10.3389/fenrg.2021.629074
Efficiency improvement of near‐stoichiometric CuInSe&lt;sub&gt;2&lt;/sub&gt;Solar cells for application in tandem devices
Feurer, T., Carron, R., Torres Sevilla, G., Fu, F., Pisoni, S., Romanyuk, Y. E., … Tiwari, A. N. (2019). Efficiency improvement of near‐stoichiometric CuInSe2Solar cells for application in tandem devices. Advanced Energy Materials, 9(35), 1901428 (6 pp.). https://doi.org/10.1002/aenm.201901428
RbF post deposition treatment for narrow bandgap Cu(In,Ga)Se<sub>2</sub> solar cells
Feurer, T., Fu, F., Weiss, T. P., Avancini, E., Löckinger, J., Buecheler, S., & Tiwari, A. N. (2019). RbF post deposition treatment for narrow bandgap Cu(In,Ga)Se2 solar cells. Thin Solid Films, 670, 34-40. https://doi.org/10.1016/j.tsf.2018.12.003
Review of CdTe&lt;sub&gt;1&lt;/sub&gt;−&lt;sub&gt;&lt;em&gt;x&lt;/em&gt;&lt;/sub&gt;Se&lt;sub&gt;&lt;em&gt;x&lt;/em&gt;&lt;/sub&gt; thin films in solar cell applications
Lingg, M., Buecheler, S., & Tiwari, A. N. (2019). Review of CdTe1xSex thin films in solar cell applications. Coatings, 9(8), 520 (14 pp.). https://doi.org/10.3390/coatings9080520
Single-graded CIGS with narrow bandgap for tandem solar cells
Feurer, T., Bissig, B., Weiss, T. P., Carron, R., Avancini, E., Löckinger, J., … Tiwari, A. N. (2018). Single-graded CIGS with narrow bandgap for tandem solar cells. Science and Technology of Advanced Materials, 19(1), 263-270. https://doi.org/10.1080/14686996.2018.1444317
Structural and electronic properties of CdTe<sub>1-x</sub>Se<sub>x</sub> films and their application in solar cells
Lingg, M., Spescha, A., Haass, S. G., Carron, R., Buecheler, S., & Tiwari, A. N. (2018). Structural and electronic properties of CdTe1-xSex films and their application in solar cells. Science and Technology of Advanced Materials, 19(1), 683-692. https://doi.org/10.1080/14686996.2018.1497403
Glow discharge techniques in the chemical analysis of photovoltaic materials
Schmitt, S. W., Venzago, C., Hoffmann, B., Sivakov, V., Hofmann, T., Michler, J., … Gamez, G. (2014). Glow discharge techniques in the chemical analysis of photovoltaic materials. Progress in Photovoltaics, 22(3), 371-382. https://doi.org/10.1002/pip.2264
Linking energy scenarios with metal demand modeling–the case of indium in CIGS solar cells
Stamp, A., Wäger, P. A., & Hellweg, S. (2014). Linking energy scenarios with metal demand modeling–the case of indium in CIGS solar cells. Resources, Conservation and Recycling, 93, 156-167. https://doi.org/10.1016/j.resconrec.2014.10.012
Technological status of Cu(In,Ga)(Se,S)<SUB>2</SUB>-based photovoltaics
Reinhard, P., Buecheler, S., & Tiwari, A. N. (2013). Technological status of Cu(In,Ga)(Se,S)2-based photovoltaics. Solar Energy Materials and Solar Cells, 119, 287-290. https://doi.org/10.1016/j.solmat.2013.08.030
Chemical incorporation of copper into indium selenide thin-films for processing of CuInSe<SUB>2</SUB> solar cells
Hibberd, C. J., Ernits, K., Kaelin, M., Müller, U., & Tiwari, A. N. (2008). Chemical incorporation of copper into indium selenide thin-films for processing of CuInSe2 solar cells. Progress in Photovoltaics, 16(7), 585-593. https://doi.org/10.1002/pip.843