Active Filters

  • (-) Keywords = plasma polymerization
  • (-) Empa Laboratories ≠ 401 Biomimetic Membranes and Textiles
Search Results 1 - 20 of 36
Select Page
Near-plasma chemical surface engineering
Navascués, P., Schütz, U., Hanselmann, B., & Hegemann, D. (2024). Near-plasma chemical surface engineering. Nanomaterials, 14(2), 195 (13 pp.). https://doi.org/10.3390/nano14020195
Polymerization mechanisms of hexamethyldisiloxane in low-pressure plasmas involving complex geometries
Navascués, P., Buchtelová, M., Zajícková, L., Rupper, P., & Hegemann, D. (2024). Polymerization mechanisms of hexamethyldisiloxane in low-pressure plasmas involving complex geometries. Applied Surface Science, 645, 158824 (9 pp.). https://doi.org/10.1016/j.apsusc.2023.158824
Plasma activation mechanisms governed by specific energy input: potential and perspectives
Hegemann, D. (2023). Plasma activation mechanisms governed by specific energy input: potential and perspectives. Plasma Processes and Polymers, 20(5), 2300010 (21 pp.). https://doi.org/10.1002/ppap.202300010
Plasma-controlled surface wettability: recent advances and future applications
Ma, C., Nikiforov, A., Hegemann, D., De Geyter, N., Morent, R., & Ostrikov, K. (K. ). (2023). Plasma-controlled surface wettability: recent advances and future applications. International Materials Reviews, 68(1), 82-119. https://doi.org/10.1080/09506608.2022.2047420
Foundations of plasma enhanced chemical vapor deposition of functional coatings
Snyders, R., Hegemann, D., Thiry, D., Zabeida, O., Klemberg-Sapieha, J., & Martinu, L. (2023). Foundations of plasma enhanced chemical vapor deposition of functional coatings. Plasma Sources Science and Technology, 32(7), 074001 (36 pp.). https://doi.org/10.1088/1361-6595/acdabc
How the dynamics of subsurface hydration regulates protein-surface interactions
Bülbül, E., Hegemann, D., Geue, T., & Heuberger, M. (2020). How the dynamics of subsurface hydration regulates protein-surface interactions. Colloids and Surfaces B: Biointerfaces, 190, 110908 (8 pp.). https://doi.org/10.1016/j.colsurfb.2020.110908
Plasma processing of low vapor pressure liquids to generate functional surfaces
Gaiser, S., Schütz, U., Rupper, P., & Hegemann, D. (2020). Plasma processing of low vapor pressure liquids to generate functional surfaces. Molecules, 25(24), 6024 (23 pp.). https://doi.org/10.3390/molecules25246024
Top‐down approach to attach liquid polyethylene glycol to solid surfaces by plasma interaction
Gaiser, S., Schütz, U., & Hegemann, D. (2020). Top‐down approach to attach liquid polyethylene glycol to solid surfaces by plasma interaction. Plasma Processes and Polymers, 17(2), e1900211 (7 pp.). https://doi.org/10.1002/ppap.201900211
Extending the range of controlling protein adsorption via subsurface architecture
Bülbül, E., Rupper, P., Geue, T., Bernard, L., Heuberger, M. P., & Hegemann, D. (2019). Extending the range of controlling protein adsorption via subsurface architecture. ACS Applied Materials and Interfaces, 11(45), 42760-42772. https://doi.org/10.1021/acsami.9b14584
Correlations between gas flow and film growth in plasma polymerization processes
Gaiser, S., & Hegemann, D. (2019). Correlations between gas flow and film growth in plasma polymerization processes. In ISPC 24 proceedings (p. 21 (3 pp.).
Influence of the aliphatic side chain on the near atmospheric pressure plasma polymerization of 2-alkyl-2-oxazolines for biomedical applications
Van Guyse, J. F. R., Cools, P., Egghe, T., Asadian, M., Vergaelen, M., Rigole, P., … De Geyter, N. (2019). Influence of the aliphatic side chain on the near atmospheric pressure plasma polymerization of 2-alkyl-2-oxazolines for biomedical applications. ACS Applied Materials and Interfaces, 11(34), 31356-31366. https://doi.org/10.1021/acsami.9b09999
Structure and stability of C:H:O plasma polymer films co-polymerized using dimethyl carbonate
Drabik, M., Lohmann, D., Hanus, J., Shelemin, A., Rupper, P., Biederman, H., & Hegemann, D. (2018). Structure and stability of C:H:O plasma polymer films co-polymerized using dimethyl carbonate. Plasma, 1(1), 156-176. https://doi.org/10.3390/plasma1010015
Energy conversion efficiency in low- and atmospheric-pressure plasma polymerization processes, part II: HMDSO
Hegemann, D., Nisol, B., Watson, S., & Wertheimer, M. R. (2017). Energy conversion efficiency in low- and atmospheric-pressure plasma polymerization processes, part II: HMDSO. Plasma Chemistry and Plasma Processing, 37(1), 257-271. https://doi.org/10.1007/s11090-016-9754-x
Novel approach for the development of ultra-light, fully-thermoplastic composites
Leal, A. A., Veeramachaneni, J. C., Reifler, F. A., Amberg, M., Stapf, D., Barandun, G. A., … Hufenus, R. (2016). Novel approach for the development of ultra-light, fully-thermoplastic composites. Materials and Design, 93, 334-342. https://doi.org/10.1016/j.matdes.2015.12.125
Densification and hydration of HMDSO plasma polymers
Blanchard, N. E., Hanselmann, B., Drosten, J., Heuberger, M., & Hegemann, D. (2015). Densification and hydration of HMDSO plasma polymers. Plasma Processes and Polymers, 12(1), 32-41. https://doi.org/10.1002/ppap.201400118
Long-term aging of Ag/a-C:H:O nanocomposite coatings in air and in aqueous environment
Drábik, M., Pešička, J., Biederman, H., & Hegemann, D. (2015). Long-term aging of Ag/a-C:H:O nanocomposite coatings in air and in aqueous environment. Science and Technology of Advanced Materials, 16(2), 025005 (17 pp.). https://doi.org/10.1088/1468-6996/16/2/025005
Plasma polymer deposition and coatings on polymers
Hegemann, D. (2014). Plasma polymer deposition and coatings on polymers. In S. Hashmi, J. V. T. Chester, F. B. Gilmar, & Y. Bekir (Eds.), Vol. 4. Comprehensive materials processing (pp. 201-228). https://doi.org/10.1016/B978-0-08-096532-1.00426-X
Plasma-Substrate Interaction during Plasma Deposition on Polymers
Hegemann, D., Hanselmann, B., Blanchard, N., & Amberg, M. (2014). Plasma-Substrate Interaction during Plasma Deposition on Polymers. Contributions to Plasma Physics, 54(2), 162-169. https://doi.org/10.1002/ctpp.201310064
Variability in plasma polymerization processes – an international round-robin study<SUP>a</SUP>
Whittle, J. D., Short, R. D., Steele, D. A., Bradley, J. W., Bryant, P. M., Jan, F., … Michelmore, A. (2013). Variability in plasma polymerization processes – an international round-robin studya. Plasma Processes and Polymers, 10(9), 767-778. https://doi.org/10.1002/ppap.201300029
Macroscopic approach to plasma polymerization using the concept of energy density
Hegemann, D., Schütz, U., & Körner, E. (2011). Macroscopic approach to plasma polymerization using the concept of energy density. Plasma Processes and Polymers, 8(8), 689-694. https://doi.org/10.1002/ppap.201000211