Active Filters

  • (-) Keywords = reliability
Search Results 1 - 20 of 40
Select Page
Averting expenditures and willingness to pay for electricity supply reliability
Niroomand, N., & Jenkins, G. P. (2020). Averting expenditures and willingness to pay for electricity supply reliability. Journal of Benefit-Cost Analysis, 11(3), 501-523. https://doi.org/10.1017/bca.2020.25
The uncertainty with nanosafety: validity and reliability of published data
Krug, H. F. (2018). The uncertainty with nanosafety: validity and reliability of published data. Colloids and Surfaces B: Biointerfaces, 172, 113-117. https://doi.org/10.1016/j.colsurfb.2018.08.036
The DaNa<SUP>2.0</SUP> knowledge base on nanomaterials ― communicating current nanosafety research based on evaluated literature data
Nau, K., Bohmer, N., Kühnel, D., Marquardt, C., Paul, F., Steinbach, C., & Krug, H. F. (2016). The DaNa2.0 knowledge base on nanomaterials ― communicating current nanosafety research based on evaluated literature data. Journal of Materials Education, 38(3-4), 93-108.
High temperature mechanical properties of zirconia tapes used for electrolyte supported solid oxide fuel cells
Fleischhauer, F., Bermejo, R., Danzer, R., Mai, A., Graule, T., & Kuebler, J. (2015). High temperature mechanical properties of zirconia tapes used for electrolyte supported solid oxide fuel cells. Journal of Power Sources, 273, 237-243. https://doi.org/10.1016/j.jpowsour.2014.09.068
Strength of an electrolyte supported solid oxide fuel cell
Fleischhauer, F., Bermejo, R., Danzer, R., Mai, A., Graule, T., & Kuebler, J. (2015). Strength of an electrolyte supported solid oxide fuel cell. Journal of Power Sources, 297, 158-167. https://doi.org/10.1016/j.jpowsour.2015.07.075
Challenges to measure hydration, redness, elasticity and perfusion in the unloaded sacral region of healthy persons after supine position
Scheel-Sailer, A., Frotzler, A., Mueller, G., Annaheim, S., Rossi, R. M., & Derler, S. (2015). Challenges to measure hydration, redness, elasticity and perfusion in the unloaded sacral region of healthy persons after supine position. Journal of Tissue Viability, 24(2), 62-70. https://doi.org/10.1016/j.jtv.2015.03.002
How reliable are pressure measurements with Tekscan sensors on the body surface of human subjects wearing load carriage systems?
Wettenschwiler, P. D., Stämpfli, R., Lorenzetti, S., Ferguson, S. J., Rossi, R. M., & Annaheim, S. (2015). How reliable are pressure measurements with Tekscan sensors on the body surface of human subjects wearing load carriage systems? International Journal of Industrial Ergonomics, 49, 60-67. https://doi.org/10.1016/j.ergon.2015.06.003
Reliability of long-term monitoring data
Anderegg, P., Brönnimann, R., & Meier, U. (2014). Reliability of long-term monitoring data. Journal of Civil Structural Health Monitoring, 4(1), 69-75. https://doi.org/10.1007/s13349-013-0047-2
Evaluation of silicon tuning fork resonators under mechanical loads and space-relevant radiation conditions
Bandi, T., Baborowski, J., Dommann, A., Shea, H. R., Cardot, F., & Neels, A. (2014). Evaluation of silicon tuning fork resonators under mechanical loads and space-relevant radiation conditions. Journal of Micro/Nanolithography, MEMS, and MOEMS, 13(4), 043019 (9 pp.). https://doi.org/10.1117/1.JMM.13.4.043019
Evaluation of silicon tuning-fork resonators under space-relevant radiation conditions
Bandi, T., Baborowski, J., Dommann, A., Shea, H., Cardot, F., & Neels, A. (2014). Evaluation of silicon tuning-fork resonators under space-relevant radiation conditions. In H. R. Shea & R. Ramesham (Eds.), Proceedings of SPIE: Vol. 8975. Reliability, packaging, testing, and characterization of MOEMS/MEMS, nanodevices, and nanomaterials XIII (p. 89750I (7 pp.). https://doi.org/10.1117/12.2044209
Improved test setup for MEMS mechanical strength investigations and fabrication process qualification
Bandi, T., Maeder, X., Dommann, A., Shea, H., & Neels, A. (2014). Improved test setup for MEMS mechanical strength investigations and fabrication process qualification. In H. R. Shea & R. Ramesham (Eds.), Proceedings of SPIE: Vol. 8975. Reliability, packaging, testing, and characterization of MOEMS/MEMS, nanodevices, and nanomaterials XIII (p. 897509 (7 pp.). https://doi.org/10.1117/12.2044212
Post-hot isostatic pressing: a healing treatment for process related defects and laboratory grinding damage of dental zirconia?
Scherrer, S. S., Cattani-Lorente, M., Yoon, S., Karvonen, L., Pokrant, S., Rothbrust, F., & Kuebler, J. (2013). Post-hot isostatic pressing: a healing treatment for process related defects and laboratory grinding damage of dental zirconia? Dental Materials, 29(2), e180-e190. https://doi.org/10.1016/j.dental.2013.04.014
Current capability of press-fit contacts of IGBT modules
Riedel, G. J., Spindler, C., Alaperä, I., Schmidt, R., & Held, M. (2012). Current capability of press-fit contacts of IGBT modules. In IET Conference Publications: Vol. 592. 6th IET international conference on power electronics, machines and drives (PEMD 2012). https://doi.org/10.1049/cp.2012.0338
Role of crystalline precipitates on the mechanical properties of (Cu<SUB>0.50</SUB>Zr<SUB>0.50</SUB>)<SUB>100-</SUB><I><SUB>x</SUB></I>Al<I>x</I> (<I>x</I> = 4, 5, 7) bulk metallic glasses
Castellero, A., Baser, T. A., Das, J., Matteis, P., Eckert, J., Battezzati, L., & Baricco, M. (2011). Role of crystalline precipitates on the mechanical properties of (Cu0.50Zr0.50)100-xAlx (x = 4, 5, 7) bulk metallic glasses. Journal of Alloys and Compounds, 509S(Suppl. 1), S99-S104. https://doi.org/10.1016/j.jallcom.2011.01.085
Nanomaterial cell interactions: are current <em>in vitro</em> tests reliable?
Hirsch, C., Roesslein, M., Krug, H. F., & Wick, P. (2011). Nanomaterial cell interactions: are current in vitro tests reliable? Nanomedicine, 6(5), 837-847. https://doi.org/10.2217/nnm.11.88
The reassessment of existing load bearing structures – implementation into the Swiss standard
Kohler, J., & Steiger, R. (2011). The reassessment of existing load bearing structures – implementation into the Swiss standard. In J. Saporiti Machado, P. Palma, & P. B. Lourenço (Eds.), International conference on structural health assessment of timber structures (p. (13 pp.). Laboratório Nacional de Engenharia Civil.
&lt;em&gt;In-situ&lt;/em&gt; MEMS testing
Schifferle, A., Dommann, A., Neels, A., & Mazza, E. (2010). In-situ MEMS testing. In M. Laudon & B. Romanowicz (Eds.), Vol. 2. Nanotech 2010. Technical proceedings of the 2010 NSTI nanotechnology conference and expo. Electronics, devices, fabrication, MEMS, fluidics and computational (pp. 165-168). NSTI; CRC Press.
Aging of MEMS - correlation of mechanical and structural properties
Neels, A., Bourban, G., Shea, H., Schifferle, A., Mazza, E., & Dommann, A. (2009). Aging of MEMS - correlation of mechanical and structural properties. In J. Brugger & D. Briand (Eds.), Procedia chemistry: Vol. 1. Proceedings of the Eurosensors XXIII conference (pp. 820-823). https://doi.org/10.1016/j.proche.2009.07.204
An introduction to reliability of optical components and fiber optic sensors
Berghmans, F., Eve, S., & Held, M. (2008). An introduction to reliability of optical components and fiber optic sensors. In W. Bock J., I. Gannot, & S. Tanev (Eds.), NATO science for peace and security series B: physics and biophysics. Optical waveguide sensing and imaging. Proceedings of the NATO Advanced Study Institute on sensing and imaging in medicine, environment, security and defence (pp. 73-100). https://doi.org/10.1007/978-1-4020-6952-9_4
Reliability, availability, and maintainability considerations for fiber optical sensor applications
Brönnimann, R., Held, M., & Nellen, P. M. (2006). Reliability, availability, and maintainability considerations for fiber optical sensor applications. In D. Inaudi, W. Ecke, B. Culshaw, K. J. Peters, & E. Udd (Eds.), Proceedings of SPIE: Vol. 6167. Smart structures and materials 2006: smart sensor monitoring systems and applications (p. 61671B (15 pp.). https://doi.org/10.1117/12.657872