Active Filters

  • (-) Keywords = risk assessment
  • (-) Journal ≠ Human and Ecological Risk Assessment
Search Results 1 - 20 of 34
Select Page
Widespread pesticide distribution in the European atmosphere questions their degradability in air
Mayer, L., Degrendele, C., Šenk, P., Kohoutek, J., Přibylová, P., Kukučka, P., … Lammel, G. (2024). Widespread pesticide distribution in the European atmosphere questions their degradability in air. Environmental Science and Technology, 58(7), 3342-3352. https://doi.org/10.1021/acs.est.3c08488
Assessment of compression forces in a digitally modified short leg cast for pressure injury risk monitoring in healthy children
Vrankovic, M. I., Annaheim, S., Willibald, J., Lieber, J., van Hedel, H. J. A., Schlüer, A. B., … Meyer-Heim, A. (2024). Assessment of compression forces in a digitally modified short leg cast for pressure injury risk monitoring in healthy children. Frontiers in Pediatrics, 11, 1273829 (11 pp.). https://doi.org/10.3389/fped.2023.1273829
Optimizing chemicals management in the United States and Canada through the essential-use Approach
Bǎlan, S. A., Andrews, D. Q., Blum, A., Diamond, M. L., Fernández, S. R., Harriman, E., … Kwiatkowski, C. F. (2023). Optimizing chemicals management in the United States and Canada through the essential-use Approach. Environmental Science and Technology, 57(4), 1568-1575. https://doi.org/10.1021/acs.est.2c05932
(Re)Conceptualizing decision-making tools in a risk governance framework for emerging technologies - the case of nanomaterials
Mullins, M., Himly, M., Rodríguez Llopis, I., Furxhi, I., Hofer, S., Hofstätter, N., … Drobne, D. (2023). (Re)Conceptualizing decision-making tools in a risk governance framework for emerging technologies - the case of nanomaterials. Environment Systems and Decisions, 43(2), 3-15. https://doi.org/10.1007/s10669-022-09870-2
Probabilistic environmental risk assessment of microplastics in soils
Tunali, M., Adam, V., & Nowack, B. (2023). Probabilistic environmental risk assessment of microplastics in soils. Geoderma, 430, 116315 (11 pp.). https://doi.org/10.1016/j.geoderma.2022.116315
On-site quantification and infection risk assessment of airborne SARS-CoV-2 virus via a nanoplasmonic bioaerosol sensing system in healthcare settings
Qiu, G., Spillmann, M., Tang, J., Zhao, Y. B., Tao, Y., Zhang, X., … Wang, J. (2022). On-site quantification and infection risk assessment of airborne SARS-CoV-2 virus via a nanoplasmonic bioaerosol sensing system in healthcare settings. Advanced Science, 9(35), 2204774 (11 pp.). https://doi.org/10.1002/advs.202204774
Combined <em>in vitro-in vivo</em> dosimetry enables the extrapolation of <em>in vitro</em> doses to human exposure levels: a proof of concept based on a meta-analysis of <em>in vitro</em> and <em>in vivo</em> titanium dioxide toxicity data
Romeo, D., Nowack, B., & Wick, P. (2022). Combined in vitro-in vivo dosimetry enables the extrapolation of in vitro doses to human exposure levels: a proof of concept based on a meta-analysis of in vitro and in vivo titanium dioxide toxicity data. NanoImpact, 25, 100376 (11 pp.). https://doi.org/10.1016/j.impact.2021.100376
Safe(r) by design guidelines for the nanotechnology industry
Sánchez Jiménez, A., Puelles, R., Perez-Fernandez, M., Barruetabeña, L., Jacobsen, N. R., Suarez-Merino, B., … Llopis, I. R. (2022). Safe(r) by design guidelines for the nanotechnology industry. NanoImpact, 25, 100385 (12 pp.). https://doi.org/10.1016/j.impact.2022.100385
Analytical and toxicological aspects of nanomaterials in different product groups: challenges and opportunities
Tschiche, H. R., Bierkandt, F. S., Creutzenberg, O., Fessard, V., Franz, R., Greiner, R., … Laux, P. (2022). Analytical and toxicological aspects of nanomaterials in different product groups: challenges and opportunities. NanoImpact, 28, 100416 (15 pp.). https://doi.org/10.1016/j.impact.2022.100416
Probabilistic environmental risk assessment of microplastics in marine habitats
Adam, V., von Wyl, A., & Nowack, B. (2021). Probabilistic environmental risk assessment of microplastics in marine habitats. Aquatic Toxicology, 230, 105689 (10 pp.). https://doi.org/10.1016/j.aquatox.2020.105689
A methodology for developing key events to advance nanomaterial-relevant adverse outcome pathways to inform risk assessment
Halappanavar, S., Ede, J. D., Mahapatra, I., Krug, H. F., Kuempel, E. D., Lynch, I., … Shatkin, J. A. (2021). A methodology for developing key events to advance nanomaterial-relevant adverse outcome pathways to inform risk assessment. Nanotoxicology, 15(3), 289-310. https://doi.org/10.1080/17435390.2020.1851419
An integrated pathway based on &lt;em&gt;in vitro&lt;/em&gt; data for the human hazard assessment of nanomaterials
Romeo, D., Salieri, B., Hischier, R., Nowack, B., & Wick, P. (2020). An integrated pathway based on in vitro data for the human hazard assessment of nanomaterials. Environment International, 137, 105505 (12 pp.). https://doi.org/10.1016/j.envint.2020.105505
Safe(r) by design implementation in the nanotechnology industry
Sánchez Jiménez, A., Puelles, R., Pérez-Fernández, M., Gómez-Fernández, P., Barruetabeña, L., Jacobsen, N. R., … Rodríguez Llopis, I. (2020). Safe(r) by design implementation in the nanotechnology industry. NanoImpact, 20, 100267 (12 pp.). https://doi.org/10.1016/j.impact.2020.100267
Comparison of species sensitivity distribution modeling approaches for environmental risk assessment of nanomaterials - a case study for silver and titanium dioxide representative materials
Sørensen, S. N., Wigger, H., Zabeo, A., Semenzin, E., Hristozov, D., Nowack, B., … Baun, A. (2020). Comparison of species sensitivity distribution modeling approaches for environmental risk assessment of nanomaterials - a case study for silver and titanium dioxide representative materials. Aquatic Toxicology, 225, 105543 (8 pp.). https://doi.org/10.1016/j.aquatox.2020.105543
Material-specific properties applied to an environmental risk assessment of engineered nanomaterials – implications on grouping and read-across concepts
Wigger, H., & Nowack, B. (2019). Material-specific properties applied to an environmental risk assessment of engineered nanomaterials – implications on grouping and read-across concepts. Nanotoxicology, 13(5), 623-643. https://doi.org/10.1080/17435390.2019.1568604
Environmental risk assessment of engineered nano-SiO<sub><small>2</small></sub>, nano iron oxides, nano-CeO<sub><small>2</small></sub>, nano-Al<sub><small>2</small></sub>O<sub><small>3</small></sub>, and quantum dots
Wang, Y., & Nowack, B. (2018). Environmental risk assessment of engineered nano-SiO2, nano iron oxides, nano-CeO2, nano-Al2O3, and quantum dots. Environmental Toxicology and Chemistry, 37(5), 1387-1395. https://doi.org/10.1002/etc.4080
Sound understanding of environmental, health and safety, clinical, and market aspects is imperative to clinical translation of nanomedicines
Rösslein, M., Liptrott, N. J., Owen, A., Boisseau, P., Wick, P., & Herrmann, I. K. (2017). Sound understanding of environmental, health and safety, clinical, and market aspects is imperative to clinical translation of nanomedicines. Nanotoxicology, 11(2), 147-149. https://doi.org/10.1080/17435390.2017.1279361
Nanomaterials to microplastics: swings and roundabouts
Scott-Fordsmand, J. J., Navas, J. M., Hund-Rinke, K., Nowack, B., & Amorim, M. J. B. (2017). Nanomaterials to microplastics: swings and roundabouts. Nano Today, 17, 7-10. https://doi.org/10.1016/j.nantod.2017.09.002
Environmental risk assessment strategy for nanomaterials
Scott‐Fordsmand, J. J., Peijnenburg, W. J. G. M., Semenzin, E., Nowack, B., Hunt, N., Hristozov, D., … Hund‐Rinke, K. (2017). Environmental risk assessment strategy for nanomaterials. International Journal of Environmental Research and Public Health, 14(10), 1251 (20 pp.). https://doi.org/10.3390/ijerph14101251
Frameworks and tools for risk assessment of manufactured nanomaterials
Hristozov, D., Gottardo, S., Semenzin, E., Oomen, A., Bos, P., Peijnenburg, W., … Marcomini, A. (2016). Frameworks and tools for risk assessment of manufactured nanomaterials. Environment International, 95, 36-53. https://doi.org/10.1016/j.envint.2016.07.016