Active Filters

  • (-) Keywords = selective laser melting
Search Results 1 - 20 of 20
  • RSS Feed
Select Page
Crack-reduced laser powder bed fused oxide ceramic parts by in-situ synthesis of negative thermal expansion phases
Pfeiffer, S., Florio, K., Makowska, M., Aneziris, C. G., Van Swygenhoven, H., Wegener, K., & Graule, T. (2023). Crack-reduced laser powder bed fused oxide ceramic parts by in-situ synthesis of negative thermal expansion phases. Journal of the European Ceramic Society, 44(2), 1012-1026. https://doi.org/10.1016/j.jeurceramsoc.2023.09.040
Heat treatment response and mechanical properties of a Zr-modified AA2618 aluminum alloy fabricated by laser powder bed fusion
Schuster, M., De Luca, A., Kucajda, D., Hosseini, E., Widmer, R., Maeder, X., & Leinenbach, C. (2023). Heat treatment response and mechanical properties of a Zr-modified AA2618 aluminum alloy fabricated by laser powder bed fusion. Journal of Alloys and Compounds, 962, 171166 (14 pp.). https://doi.org/10.1016/j.jallcom.2023.171166
Crack-reduced alumina/aluminum titanate composites additive manufactured by laser powder bed fusion of black TiO<sub>2−x</sub> doped alumina granules
Pfeiffer, S., Florio, K., Makowska, M., Marone, F., Yüzbasi, S., Aneziris, C. G., … Graule, T. (2022). Crack-reduced alumina/aluminum titanate composites additive manufactured by laser powder bed fusion of black TiO2−x doped alumina granules. Journal of the European Ceramic Society, 42(8), 3515-3529. https://doi.org/10.1016/j.jeurceramsoc.2022.02.046
Comprehensive investigation of residual stress in selective laser melting based on cohesive zone model
Zou, S., Xiao, X., Li, Z., Liu, M., Zhu, C., Zhu, Z., … Zhu, F. (2022). Comprehensive investigation of residual stress in selective laser melting based on cohesive zone model. Materials Today Communications, 31, 103283 (8 pp.). https://doi.org/10.1016/j.mtcomm.2022.103283
Nondestructive characterization of laser powder bed fusion parts with neutron Bragg edge imaging
Busi, M., Kalentics, N., Morgano, M., Griffiths, S., Tremsin, A. S., Shinohara, T., … Strobl, M. (2021). Nondestructive characterization of laser powder bed fusion parts with neutron Bragg edge imaging. Additive Manufacturing, 39, 101848 (9 pp.). https://doi.org/10.1016/j.addma.2021.101848
Process characterization and analysis of ceramic powder bed fusion
Florio, K., Puccio, D., Viganò, G., Pfeiffer, S., Verga, F., Grasso, M., … Wegener, K. (2021). Process characterization and analysis of ceramic powder bed fusion. International Journal of Advanced Manufacturing Technology, 117, 2105-2116. https://doi.org/10.1007/s00170-021-07625-y
Precipitation in a 2xxx series Al-Cu-Mg-Zr alloy fabricated by laser powder bed fusion
Schuster, M., De Luca, A., Mathur, A., Hosseini, E., & Leinenbach, C. (2021). Precipitation in a 2xxx series Al-Cu-Mg-Zr alloy fabricated by laser powder bed fusion. Materials and Design, 211, 110131 (15 pp.). https://doi.org/10.1016/j.matdes.2021.110131
Additive manufacturing of a precious bulk metallic glass
Sohrabi, N., Jhabvala, J., Kurtuldu, G., Frison, R., Parrilli, A., Stoica, M., … Logé, R. E. (2021). Additive manufacturing of a precious bulk metallic glass. Applied Materials Today, 24, 101080 (16 pp.). https://doi.org/10.1016/j.apmt.2021.101080
Characterization, mechanical properties and dimensional accuracy of a Zr-based bulk metallic glass manufactured via laser powder-bed fusion
Sohrabi, N., Jhabvala, J., Kurtuldu, G., Stoica, M., Parrilli, A., Berns, S., … Logé, R. E. (2021). Characterization, mechanical properties and dimensional accuracy of a Zr-based bulk metallic glass manufactured via laser powder-bed fusion. Materials and Design, 199, 109400 (14 pp.). https://doi.org/10.1016/j.matdes.2020.109400
Relating fracture toughness to micro-pillar compression response for a laser powder bed additive manufactured bulk metallic glass
Best, J. P., Ast, J., Li, B., Stolpe, M., Busch, R., Yang, F., … Kruzic, J. J. (2020). Relating fracture toughness to micro-pillar compression response for a laser powder bed additive manufactured bulk metallic glass. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 770, 138535 (8 pp.). https://doi.org/10.1016/j.msea.2019.138535
Adaptive local-global multiscale approach for thermal simulation of the selective laser melting process
Gh Ghanbari, P., Mazza, E., & Hosseini, E. (2020). Adaptive local-global multiscale approach for thermal simulation of the selective laser melting process. Additive Manufacturing, 36, 101518 (10 pp.). https://doi.org/10.1016/j.addma.2020.101518
3D laser shock peening - a new method for improving fatigue properties of selective laser melted parts
Kalentics, N., Ortega Varela de Seijas, M., Griffiths, S., Leinenbach, C., & Logé, R. E. (2020). 3D laser shock peening - a new method for improving fatigue properties of selective laser melted parts. Additive Manufacturing, 33, 101112 (12 pp.). https://doi.org/10.1016/j.addma.2020.101112
Mechanical anisotropy investigated in the complex SLM-processed Sc- and Zr-modified Al–Mg alloy microstructure
Best, J. P., Maeder, X., Michler, J., & Spierings, A. B. (2019). Mechanical anisotropy investigated in the complex SLM-processed Sc- and Zr-modified Al–Mg alloy microstructure. Advanced Engineering Materials, 21(3), 1801113 (6 pp.). https://doi.org/10.1002/adem.201801113
Healing cracks in selective laser melting by 3D laser shock peening
Kalentics, N., Sohrabi, N., Tabasi, H. G., Griffiths, S., Jhabvala, J., Leinenbach, C., … Logé, R. E. (2019). Healing cracks in selective laser melting by 3D laser shock peening. Additive Manufacturing, 30, 100881 (10 pp.). https://doi.org/10.1016/j.addma.2019.100881
Pre-processing of hematite-doped alumina granules for selective laser melting
Makowska, M., Pfeiffer, S., Casati, N., Florio, K., Vetterli, M., Wegener, K., … van Swygenhoven, H. (2019). Pre-processing of hematite-doped alumina granules for selective laser melting. Ceramics International, 45(14), 17014-17022. https://doi.org/10.1016/j.ceramint.2019.05.251
Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting
Croteau, J. R., Griffiths, S., Rossell, M. D., Leinenbach, C., Kenel, C., Jansen, V., … Vo, N. Q. (2018). Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting. Acta Materialia, 153, 35-44. https://doi.org/10.1016/j.actamat.2018.04.053
3D laser shock peening – a new method for the 3D control of residual stresses in selective laser melting
Kalentics, N., Boillat, E., Peyre, P., Gorny, C., Kenel, C., Leinenbach, C., … Logé, R. E. (2017). 3D laser shock peening – a new method for the 3D control of residual stresses in selective laser melting. Materials and Design, 130, 350-356. https://doi.org/10.1016/j.matdes.2017.05.083
Selective laser melting of an oxide dispersion strengthened (ODS) γ-TiAl alloy towards production of complex structures
Kenel, C., Dasargyri, G., Bauer, T., Colella, A., Spierings, A. B., Leinenbach, C., & Wegener, K. (2017). Selective laser melting of an oxide dispersion strengthened (ODS) γ-TiAl alloy towards production of complex structures. Materials and Design, 134, 81-90. https://doi.org/10.1016/j.matdes.2017.08.034
Integrating fiber Fabry-Perot cavity sensor into 3-D printed metal components for extreme high-temperature monitoring applications
Mathew, J., Hauser, C., Stoll, P., Kenel, C., Polyzos, D., Havermann, D., … Maier, R. R. J. (2017). Integrating fiber Fabry-Perot cavity sensor into 3-D printed metal components for extreme high-temperature monitoring applications. IEEE Sensors Journal, 17(13), 4107-4114. https://doi.org/10.1109/JSEN.2017.2703085
Processing of metal-diamond-composites using selective laser melting
Spierings, A. B., Leinenbach, C., Kenel, C., & Wegener, K. (2014). Processing of metal-diamond-composites using selective laser melting. In Solid freeform fabrication proceedings (pp. 764-774). University of Texas at Austin.