Active Filters

  • (-) Keywords = sensor
  • (-) Empa Authors ≠ Scherer, Lukas J.
Search Results 1 - 20 of 20
  • RSS Feed
Select Page
Digital twins for selecting the optimal ventilated strawberry packaging based on the unique hygrothermal conditions of a shipment from farm to retailer
Shrivastava, C., Schudel, S., Shoji, K., Onwude, D., da Silva, F. P., Turan, D., … Defraeye, T. (2023). Digital twins for selecting the optimal ventilated strawberry packaging based on the unique hygrothermal conditions of a shipment from farm to retailer. Postharvest Biology and Technology, 199, 112283 (28 pp.). https://doi.org/10.1016/j.postharvbio.2023.112283
Developing of biophysical food for monitoring postharvest supply chains for avocado and potato and deploying of biophysical apple
You, L., Schudel, S., & Defraeye, T. (2023). Developing of biophysical food for monitoring postharvest supply chains for avocado and potato and deploying of biophysical apple. Journal of Food Engineering, 338, 111219 (10 pp.). https://doi.org/10.1016/j.jfoodeng.2022.111219
Roadmap on soft robotics: multifunctionality, adaptability and growth without borders
Mazzolai, B., Mondini, A., Del Dottore, E., Margheri, L., Carpi, F., Suzumori, K., … Lendlein, A. (2022). Roadmap on soft robotics: multifunctionality, adaptability and growth without borders. Multifunctional Materials, 5(3), 032001 (62 pp.). https://doi.org/10.1088/2399-7532/ac4c95
Undulatory swimming performance explored with a biorobotic fish and measured by soft sensors and particle image velocimetry
Schwab, F., Wiesemüller, F., Mucignat, C., Park, Y. L., Lunati, I., Kovac, M., & Jusufi, A. (2022). Undulatory swimming performance explored with a biorobotic fish and measured by soft sensors and particle image velocimetry. Frontiers in Robotics and AI, 8, 791722 (11 pp.). https://doi.org/10.3389/frobt.2021.791722
Porous and ultra-flexible crosslinked MXene/Polyimide composites for multifunctional electromagnetic interference shielding
Zeng, Z. H., Wu, N., Wei, J. J., Yang, Y. F., Wu, T. T., Li, B., … Zhao, S. Y. (2022). Porous and ultra-flexible crosslinked MXene/Polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Letters, 14(1), 59 (16 pp.). https://doi.org/10.1007/s40820-022-00800-0
Detecting COVID-19 from breath: a game changer for a big challenge
Giovannini, G., Haick, H., & Garoli, D. (2021). Detecting COVID-19 from breath: a game changer for a big challenge. ACS Sensors, 6(4), 1408-1417. https://doi.org/10.1021/acssensors.1c00312
Thermal sensor performance and fire characterisation during short duration engulfment tests
Kemp, S., Proulx, G., Auerbach, M., Grady, M., Parry, R., & Camenzind, M. (2020). Thermal sensor performance and fire characterisation during short duration engulfment tests. Fire and Materials, 44(4), 461-478. https://doi.org/10.1002/fam.2784
Artificial fruit for monitoring the thermal history of horticultural produce in the cold chain
Defraeye, T., Wu, W., Prawiranto, K., Fortunato, G., Kemp, S., Hartmann, S., … Nicolai, B. (2017). Artificial fruit for monitoring the thermal history of horticultural produce in the cold chain. Journal of Food Engineering, 215, 51-60. https://doi.org/10.1016/j.jfoodeng.2017.07.012
The impact of microstructure in (K,Na)NbO<sub>3</sub>-based lead-free piezoelectric fibers: from processing to device production for structural health monitoring
Lusiola, T., Soppelsa, A., Rubio-Marcos, F., Fernandez, J. F., & Clemens, F. (2016). The impact of microstructure in (K,Na)NbO3-based lead-free piezoelectric fibers: from processing to device production for structural health monitoring. Journal of the European Ceramic Society, 36(11), 2745-2754. https://doi.org/10.1016/j.jeurceramsoc.2016.04.009
Piezoresistive soft condensed matter sensor for body-mounted vital function applications
Melnykowycz, M., Tschudin, M., & Clemens, F. (2016). Piezoresistive soft condensed matter sensor for body-mounted vital function applications. Sensors, 16(3), 326 (19 pp.). https://doi.org/10.3390/s16030326
Reliability of long-term monitoring data
Anderegg, P., Brönnimann, R., & Meier, U. (2014). Reliability of long-term monitoring data. Journal of Civil Structural Health Monitoring, 4(1), 69-75. https://doi.org/10.1007/s13349-013-0047-2
Comparison of piezoresistive monofilament polymer sensors
Melnykowycz, M., Koll, B., Scharf, D., & Clemens, F. (2014). Comparison of piezoresistive monofilament polymer sensors. Sensors, 14(1), 1278-1294. https://doi.org/10.3390/s140101278
Sensors on textile fibres based on Ag/a-C:H:O nanocomposite coatings
Drabik, M., Vogel-Schäuble, N., Heuberger, M., Hegemann, D., & Biederman, H. (2013). Sensors on textile fibres based on Ag/a-C:H:O nanocomposite coatings. Nanomaterials and Nanotechnology, 3, 13 (8 pp.). https://doi.org/10.5772/56923
Piezoelectric fiber composites as sensor elements for structural health monitoring and adaptive material systems
Brunner, A. J., Birchmeier, M., Melnykowycz, M. M., & Barbezat, M. (2009). Piezoelectric fiber composites as sensor elements for structural health monitoring and adaptive material systems. Journal of Intelligent Material Systems and Structures, 20(9), 1045-1055. https://doi.org/10.1177/1045389X08101196
Novel ultrasound read-out for a wireless implantable passive strain sensor (WIPSS)
Gattiker, F., Umbrecht, F., Müller, D., Neuenschwander, J., Sennhauser, U., Wendlandt, M., & Hierold, C. (2007). Novel ultrasound read-out for a wireless implantable passive strain sensor (WIPSS). In Transducers '07 & Eurosensors XXI. 14th international conference on solid-state sensors, actuators and microsystems (pp. 57-60). https://doi.org/10.1109/SENSOR.2007.4300070
Integration and reliability of active fiber composite (AFC) sensors/actuators in carbon/epoxy laminates
Melnykowycz, M. M., Belloli, A., Ermanni, P., & Barbezat, M. (2006). Integration and reliability of active fiber composite (AFC) sensors/actuators in carbon/epoxy laminates. In W. D. Armstrong (Ed.), Proceedings of SPIE: Vol. 6170. Smart structures and materials 2006: active materials: behavior and mechanics (p. 61701J (11 pp.). https://doi.org/10.1117/12.658639
Characterization of active fiber composites for sensor applications
Nitzsche, F., Müller, M. A., & Paradies, R. (2006). Characterization of active fiber composites for sensor applications. In Proceedings of ICAST2006: 17th international conference on adaptive structures and technologies, Oct. 16 ~ Oct. 19, Taipei, Taiwan (pp. 246-256). Institute of applied mechanics, National Taiwan University.
Integration of active fiber composite (AFC) sensors/actuators into glass/epoxy laminates
Melnykowycz, M. M., Kornmann, X., Huber, C., Brunner, A. J., & Barbezat, M. (2005). Integration of active fiber composite (AFC) sensors/actuators into glass/epoxy laminates. In W. D. Armstrong (Ed.), Proceedings of SPIE: Vol. 5761. Smart structures and materials 2005: active materials: behavior and mechanics (pp. 221-232). https://doi.org/10.1117/12.599109
Acoustic emission sensor properties of active fibre composite elements compared with commercial acoustic emission sensors
Barbezat, M., Brunner, A. J., Flüeler, P., Huber, C., & Kornmann, X. (2004). Acoustic emission sensor properties of active fibre composite elements compared with commercial acoustic emission sensors. Sensors and Actuators A: Physical, 114(1), 13-20. https://doi.org/10.1016/j.sna.2004.01.062
Reliability modelling and testing of optical fiber Bragg sensors for strain measurements
Sennhauser, U., Bronnimann, R., & Nellen, P. M. (1996). Reliability modelling and testing of optical fiber Bragg sensors for strain measurements. In R. P. DePaula & J. W. Berthold (Eds.), Proceedings of SPIE: Vol. 2839. Fiber optic and laser sensors XIV (pp. 64-75). https://doi.org/10.1117/12.255382