| Detection of contaminants in hydrogen fuel for fuel cell electrical vehicles with sensors—available technology, testing protocols and implementation challenges
Arrhenius, K., Bacquart, T., Schröter, K., Carré, M., Gozlan, B., Beurey, C., & Blondeel, C. (2022). Detection of contaminants in hydrogen fuel for fuel cell electrical vehicles with sensors—available technology, testing protocols and implementation challenges. Processes, 10(1), 20 (16 pp.). https://doi.org/10.3390/pr10010020 |
| HRXRD and micro-CT multiscale investigation of stress and defects induced by a novel packaging design for MEMS sensors
Borzì, A., Zboray, R., Dolabella, S., Brun, S., Telmont, F., Kupferschmied, P., … Neels, A. (2022). HRXRD and micro-CT multiscale investigation of stress and defects induced by a novel packaging design for MEMS sensors. Applied Materials Today, 29, 101555 (11 pp.). https://doi.org/10.1016/j.apmt.2022.101555 |
| Solvent-free synthesis and processing of conductive elastomer composites for green dielectric elastomer transducers
Danner, P. M., Iacob, M., Sasso, G., Burda, I., Rieger, B., Nüesch, F., & Opris, D. M. (2022). Solvent-free synthesis and processing of conductive elastomer composites for green dielectric elastomer transducers. Macromolecular Rapid Communications, 43(6), 2100823 (12 pp.). https://doi.org/10.1002/marc.202100823 |
| A single three-parameter tilted fibre Bragg grating sensor to monitor the thermosetting composite curing process
Fazzi, L., Struzziero, G., Dransfeld, C., & Groves, R. M. (2022). A single three-parameter tilted fibre Bragg grating sensor to monitor the thermosetting composite curing process. Advanced Manufacturing: Polymer & Composites Science, 8(1), 33-41. https://doi.org/10.1080/20550340.2022.2041221 |
| Soft carbon-based multi-sensory resistive receptors
Georgopoulou, A., Eckey, L. M., & Clemens, F. (2022). Soft carbon-based multi-sensory resistive receptors. In A. P. Vassilopoulos & V. Michaud (Eds.), Life cycle assessment: Vol. 6. Proceedings of the 20th European conference on composite materials. Composite meet sustainability (pp. 247-254). Ecole Polytechnique Fédérale de Lausanne (EPFL). |
| Soft self-healing resistive-based sensors inspired by sensory transduction in biological systems
Georgopoulou, A., Brancart, J., Terryn, S., Bosman, A. W., Norvez, S., Van Assche, G., … Clemens, F. (2022). Soft self-healing resistive-based sensors inspired by sensory transduction in biological systems. Applied Materials Today, 29, 101638 (26 pp.). https://doi.org/10.1016/j.apmt.2022.101638 |
| Self-healing sensorized soft robots
Roels, E., Terryn, S., Brancart, J., Sahraeeazartamar, F., Clemens, F., Van Assche, G., & Vanderborght, B. (2022). Self-healing sensorized soft robots. Materials Today Electronics, 1, 100003 (14 pp.). https://doi.org/10.1016/j.mtelec.2022.100003 |
| pH-responsive electrospun nanofibers and their applications
Schoeller, J., Itel, F., Wuertz-Kozak, K., Fortunato, G., & Rossi, R. M. (2022). pH-responsive electrospun nanofibers and their applications. Polymer Reviews, 62(2), 351-399. https://doi.org/10.1080/15583724.2021.1939372 |
| Sustainable-macromolecule-assisted preparation of cross-linked, ultralight, flexible graphene aerogel sensors toward low-frequency strain/pressure to high-frequency vibration sensing
Zeng, Z., Wu, N., Yang, W., Xu, H., Liao, Y., Li, C., … Lu, X. (2022). Sustainable-macromolecule-assisted preparation of cross-linked, ultralight, flexible graphene aerogel sensors toward low-frequency strain/pressure to high-frequency vibration sensing. Small, 18(24), 2202047 (11 pp.). https://doi.org/10.1002/smll.202202047 |
| Self-supporting smart air filters based on PZT/PVDF electrospun nanofiber composite membrane
He, W., Guo, Y., Zhao, Y. B., Jiang, F., Schmitt, J., Yue, Y., … Wang, J. (2021). Self-supporting smart air filters based on PZT/PVDF electrospun nanofiber composite membrane. Chemical Engineering Journal, 423, 130247 (11 pp.). https://doi.org/10.1016/j.cej.2021.130247 |
| Modelling and monitoring of abrasive finishing processes using artificial intelligence techniques: a review
Pandiyan, V., Shevchik, S., Wasmer, K., Castagne, S., & Tjahjowidodo, T. (2020). Modelling and monitoring of abrasive finishing processes using artificial intelligence techniques: a review. Journal of Manufacturing Processes, 57, 114-135. https://doi.org/10.1016/j.jmapro.2020.06.013 |
| Stretchable piezoelectric elastic composites for sensors and energy generators
Quinsaat, J. E. Q., de Wild, T., Nüesch, F. A., Damjanovic, D., Krämer, R., Schürch, G., … Opris, D. M. (2020). Stretchable piezoelectric elastic composites for sensors and energy generators. Composites Part B: Engineering, 198, 108211 (13 pp.). https://doi.org/10.1016/j.compositesb.2020.108211 |
| Polymer optical fibres in healthcare: solutions, applications and implications. A perspective
Quandt, B. M., Boesel, L. F., & Rossi, R. M. (2018). Polymer optical fibres in healthcare: solutions, applications and implications. A perspective. Polymer International, 67(9), 1150-1154. https://doi.org/10.1002/pi.5511 |
| Applications of laser printing for organic electronics
Delaporte, P., Ainsebaa, A., Alloncle, A. P., Benetti, M., Boutopoulos, C., Cannata, D., … Zergioti, I. (2013). Applications of laser printing for organic electronics. In X. Xu, G. Hennig, Y. Nakata, & S. W. Roth (Eds.), Proceedings of SPIE: Vol. 8607. Laser applications in microelectronic and optoelectronic manufacturing (LAMOM) XVIII (p. 86070Z (13 pp.). https://doi.org/10.1117/12.2004062 |
| Synthesis, characterization, electronic and gas-sensing properties towards H<SUB>2</SUB> and CO of transparent, large-area, low-layer graphene
Kayhan, E., Prasad, R. M., Gurlo, A., Yilmazoglu, O., Engstler, J., Ionescu, E., … Schneider, J. J. (2012). Synthesis, characterization, electronic and gas-sensing properties towards H2 and CO of transparent, large-area, low-layer graphene. Chemistry: A European Journal, 18(47), 14996-15003. https://doi.org/10.1002/chem.201201880 |
| Laser machining of silicon nitride based composite cantilever structures
Blugan, G., Herrmann, T., Graule, T., & Kuebler, J. (2011). Laser machining of silicon nitride based composite cantilever structures. Optics and Lasers in Engineering, 49(9-10), 1095-1100. https://doi.org/10.1016/j.optlaseng.2011.05.017 |
| <em>In-situ</em> MEMS testing
Schifferle, A., Dommann, A., Neels, A., & Mazza, E. (2010). In-situ MEMS testing. In M. Laudon & B. Romanowicz (Eds.), Vol. 2. Nanotech 2010. Technical proceedings of the 2010 NSTI nanotechnology conference and expo. Electronics, devices, fabrication, MEMS, fluidics and computational (pp. 165-168). NSTI; CRC Press. |
| Temperature measurement by microwave radiometry: application to microwave sintering
Beaucamp-Ricard, C., Dubois, L., Vaucher, S., Cresson, P. Y., Lasri, T., & Pribetich, J. (2009). Temperature measurement by microwave radiometry: application to microwave sintering. IEEE Transactions on Instrumentation and Measurement, 58(5), 1712-1719. https://doi.org/10.1109/TIM.2008.2009189 |
| Temperature measurement by microwave radiometry
Cresson, P. Y., Ricard, C., Dubois, L., Vaucher, S., Lasri, T., & Pribetich, J. (2008). Temperature measurement by microwave radiometry. In I2MTC 2008 IEEE international instrumentation and measurement technology conference proceedings (pp. 1344-1349). https://doi.org/10.1109/IMTC.2008.4547251 |
| Interpretation of accelerated laboratory testing of the prototype modulas stress in motion sensor with the MMLS3 load simulator
Poulikakos, L. D., Morgan, G. C. J., Muff, R., Partl, M. N., Doupal, E., & Calderara, R. (2008). Interpretation of accelerated laboratory testing of the prototype modulas stress in motion sensor with the MMLS3 load simulator. Journal of Transportation Engineering, 134(10), 414-422. https://doi.org/10.1061/(ASCE)0733-947X(2008)134:10(414) |