Active Filters

  • (-) Keywords = solid electrolyte
  • (-) Empa Authors ≠ Bay, Marie-Claude
Search Results 1 - 9 of 9
  • RSS Feed
Select Page
Nitrile-functionalized poly(siloxane) as electrolytes for high-energy-density solid-state Li batteries
Okur, F., Sheima, Y., Zimmerli, C., Zhang, H., Helbling, P., Fäh, A., … Kravchyk, K. V. (2024). Nitrile-functionalized poly(siloxane) as electrolytes for high-energy-density solid-state Li batteries. ChemSusChem, 17(3), e202301285 (8 pp.). https://doi.org/10.1002/cssc.202301285
Oriented porous NASICON 3D framework via freeze-casting for sodium-metal batteries
Edison, E., Parrilli, A., Tervoort, E., Eliasson, H., & Niederberger, M. (2023). Oriented porous NASICON 3D framework via freeze-casting for sodium-metal batteries. ACS Applied Materials and Interfaces, 15(27), 32313-32319. https://doi.org/10.1021/acsami.3c03583
A facile two-step thermal process for producing a dense, phase-pure, cubic Ta-doped lithium lanthanum zirconium oxide electrolyte for upscaling
Karuppiah, D., Komissarenko, D., Yüzbasi, N. S., Liu, Y., Warriam Sasikumar, P. V., Hadian, A., … Blugan, G. (2023). A facile two-step thermal process for producing a dense, phase-pure, cubic Ta-doped lithium lanthanum zirconium oxide electrolyte for upscaling. Batteries, 9(11), 554 (11 pp.). https://doi.org/10.3390/batteries9110554
Thermal and electrochemical interface compatibility of a hydroborate solid electrolyte with 3 V-class cathodes for all-solid-state sodium batteries
Asakura, R., Duchêne, L., Payandeh, S., Rentsch, D., Hagemann, H., Battaglia, C., & Remhof, A. (2021). Thermal and electrochemical interface compatibility of a hydroborate solid electrolyte with 3 V-class cathodes for all-solid-state sodium batteries. ACS Applied Materials and Interfaces, 13, 55319-55328. https://doi.org/10.1021/acsami.1c15246
Status and prospects of hydroborate electrolytes for all-solid-state batteries
Duchêne, L., Remhof, A., Hagemann, H., & Battaglia, C. (2020). Status and prospects of hydroborate electrolytes for all-solid-state batteries. Energy Storage Materials, 25, 782-794. https://doi.org/10.1016/j.ensm.2019.08.032
Pressure management and cell design in solid-electrolyte batteries, at the example of a sodium-nickel chloride battery
Heinz, M. V. F., Graeber, G., Landmann, D., & Battaglia, C. (2020). Pressure management and cell design in solid-electrolyte batteries, at the example of a sodium-nickel chloride battery. Journal of Power Sources, 465, 228268 (7 pp.). https://doi.org/10.1016/j.jpowsour.2020.228268
Sodium plating and stripping from Na-β"-alumina ceramics beyond 1000 mA/cm<sup>2</sup>
Landmann, D., Graeber, G., Heinz, M. V. F., Haussener, S., & Battaglia, C. (2020). Sodium plating and stripping from Na-β"-alumina ceramics beyond 1000 mA/cm2. Materials Today Energy, 18, 100515 (8 pp.). https://doi.org/10.1016/j.mtener.2020.100515
Direct solution‐based synthesis of the Na<sub>4</sub>(B<sub>12</sub>H<sub>12</sub>)(B<sub>10</sub>H<sub>10</sub>) solid electrolyte
Gigante, A., Duchêne, L., Moury, R., Pupier, M., Remhof, A., & Hagemann, H. (2019). Direct solution‐based synthesis of the Na4(B12H12)(B10H10) solid electrolyte. ChemSusChem, 12(21), 4832-4837. https://doi.org/10.1002/cssc.201902152
Aluminum-assisted densification of cosputtered lithium garnet electrolyte films for solid-state batteries
Sastre, J., Lin, T. Y., Filippin, A. N., Priebe, A., Avancini, E., Michler, J., … Buecheler, S. (2019). Aluminum-assisted densification of cosputtered lithium garnet electrolyte films for solid-state batteries. ACS Applied Energy Materials, 2(12), 8511-8524. https://doi.org/10.1021/acsaem.9b01387