Active Filters

  • (-) Keywords = surface chemistry
Search Results 1 - 20 of 20
  • RSS Feed
Select Page
Exploring intramolecular methyl-methyl coupling on a metal surface for edge-extended graphene nanoribbons
Qiu, Z., Sun, Q., Wang, S., Borin Barin, G., Dumslaff, B., Ruffieux, P., … Fasel, R. (2021). Exploring intramolecular methyl-methyl coupling on a metal surface for edge-extended graphene nanoribbons. Organic Materials, 3(2), 128-133. https://doi.org/10.1055/s-0041-1726295
Collective all‐carbon magnetism in triangulene dimers
Mishra, S., Beyer, D., Eimre, K., Ortiz, R., Fernández-Rossier, J., Berger, R., … Ruffieux, P. (2020). Collective all‐carbon magnetism in triangulene dimers. Angewandte Chemie International Edition, 59(29), 12041-12047. https://doi.org/10.1002/anie.202002687
Reversible dehalogenation in on-surface aryl-aryl coupling
Stolz, S., Di Giovannantonio, M., Urgel, J. I., Sun, Q., Kinikar, A., Borin Barin, G., … Widmer, R. (2020). Reversible dehalogenation in on-surface aryl-aryl coupling. Angewandte Chemie International Edition, 59(33), 1406-1410. https://doi.org/10.1002/anie.202005443
Diradical organic one‐dimensional polymers synthesized on a metallic surface
Sánchez-Grande, A., Urgel, J. I., Cahlík, A., Santos, J., Edalatmanesh, S., Rodríguez-Sánchez, E., … Écija, D. (2020). Diradical organic one‐dimensional polymers synthesized on a metallic surface. Angewandte Chemie International Edition, 59(40), 17594-17599. https://doi.org/10.1002/anie.202006276
Bitumen surface microstructure evolution in subzero environments
Tarpoudi Baheri, F., Schutzius, T. M., Poulikakos, D., & Poulikakos, L. D. (2020). Bitumen surface microstructure evolution in subzero environments. Journal of Microscopy, 279(1), 3-15. https://doi.org/10.1111/jmi.12890
On‐surface synthesis of cumulene‐like polymers via two‐step dehalogenative homocoupling of dibromomethylenes-functionalized tribenzoazulene
Urgel, J. I., Di Giovannantonio, M., Eimre, K., Lohr, T. G., Liu, J., Mishra, S., … Fasel, R. (2020). On‐surface synthesis of cumulene‐like polymers via two‐step dehalogenative homocoupling of dibromomethylenes-functionalized tribenzoazulene. Angewandte Chemie International Edition, 59(32), 13281-13287. https://doi.org/10.1002/anie.202001939
Overcoming steric hindrance in aryl‐aryl homocoupling via on‐surface copolymerization
Urgel, J. I., Di Giovannantonio, M., Gandus, G., Chen, Q., Liu, X., Hayashi, H., … Fasel, R. (2019). Overcoming steric hindrance in aryl‐aryl homocoupling via on‐surface copolymerization. ChemPhysChem, 20(18), 2360-2366. https://doi.org/10.1002/cphc.201900283
The silanol content and <i>in vitro</i> cytolytic activity of flame-made silica
Spyrogianni, A., Herrmann, I. K., Keevend, K., Pratsinis, S. E., & Wegner, K. (2017). The silanol content and in vitro cytolytic activity of flame-made silica. Journal of Colloid and Interface Science, 507, 95-106. https://doi.org/10.1016/j.jcis.2017.07.096
Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals
De Roo, J., Ibáñez, M., Geiregat, P., Nedelcu, G., Walravens, W., Maes, J., … Hens, Z. (2016). Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano, 10(2), 2071-2081. https://doi.org/10.1021/acsnano.5b06295
Permanent reduction of dissipation in nanomechanical Si resonators by chemical surface protection
Tao, Y., Navaretti, P., Hauert, R., Grob, U., Poggio, M., & Degen, C. L. (2015). Permanent reduction of dissipation in nanomechanical Si resonators by chemical surface protection. Nanotechnology, 26, 465501 (9 pp.). https://doi.org/10.1088/0957-4484/26/46/465501
Surface functionalization of semiconductor and oxide nanocrystals with small inorganic oxoanions (PO<sub>4</sub><sup>3–</sup>, MoO<sub>4</sub><sup>2–</sup>) and polyoxometalate ligands
Huang, J., Liu, W., Dolzhnikov, D. S., Protesescu, L., Kovalenko, M. V., Koo, B., … Talapin, D. V. (2014). Surface functionalization of semiconductor and oxide nanocrystals with small inorganic oxoanions (PO43–, MoO42–) and polyoxometalate ligands. ACS Nano, 8(9), 9388-9402. https://doi.org/10.1021/nn503458y
Debinding mechanisms in thermoplastic processing of a Ba<SUB>0.5</SUB>Sr<SUB>0.5</SUB>Co<SUB>0.8</SUB>Fe<SUB>0.2</SUB>O<SUB>3−</SUB><I><SUB>δ</SUB></I>- stearic acid–polystyrene mixture
Salehi, M., Clemens, F., Otal, E. H., Ferri, D., Graule, T., & Grobéty, B. (2013). Debinding mechanisms in thermoplastic processing of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ- stearic acid–polystyrene mixture. ChemSusChem, 6(2), 336-344. https://doi.org/10.1002/cssc.201200540
Room temperature metalation of 2H-TPP monolayer on iron and nickel surfaces by picking up substrate metal atoms
Goldoni, A., Pignedoli, C. A., Di Santo, G., Castellarin-Cudia, C., Magnano, E., Bondino, F., … Passerone, D. (2012). Room temperature metalation of 2H-TPP monolayer on iron and nickel surfaces by picking up substrate metal atoms. ACS Nano, 6(12), 10800-10807. https://doi.org/10.1021/nn304134q
Isolated Pd sites on the intermetallic PdGa(111) and PdGa(ī ī ī) model catalyst surfaces
Prinz, J., Gaspari, R., Pignedoli, C. A., Vogt, J., Gille, P., Armbrüster, M., … Widmer, R. (2012). Isolated Pd sites on the intermetallic PdGa(111) and PdGa(ī ī ī) model catalyst surfaces. Angewandte Chemie International Edition, 51(37), 9339-9343. https://doi.org/10.1002/anie.201203787
Surface chemistry of CMAs
Barthés-Labrousse, M. G., Beni, A., & Schmutz, P. (2011). Surface chemistry of CMAs. In J. M. Dubois & E. Belin-Ferré (Eds.), Complex metallic alloys: fundamentals and applications (pp. 243-272). https://doi.org/10.1002/9783527632718.ch6
Surface explosion chemistry of malic acid on Cu(110)
Roth, C., & Ernst, K. H. (2011). Surface explosion chemistry of malic acid on Cu(110). Topics in Catalysis, 54(19-20), 1378-1383. https://doi.org/10.1007/s11244-011-9764-0
Tunable nanosynthesis of composite materials by electron-impact reaction
Bernau, L., Gabureac, M., Erni, R., & Utke, I. (2010). Tunable nanosynthesis of composite materials by electron-impact reaction. Angewandte Chemie International Edition, 49(47), 8880-8884. https://doi.org/10.1002/anie.201004220
Small, minimally invasive, direct: electrons induce local reactions of adsorbed functional molecules on the nanoscale
Utke, I., & Gölzhäuser, A. (2010). Small, minimally invasive, direct: electrons induce local reactions of adsorbed functional molecules on the nanoscale. Angewandte Chemie International Edition, 49(499), 9328-9330. https://doi.org/10.1002/anie.201002677
Probing surface properties and reaction intermediates during heterogeneous catalytic oxidation of acetaldehyde
Kydd, R., Teoh, W. Y., Scott, J., Ferri, D., & Amal, R. (2009). Probing surface properties and reaction intermediates during heterogeneous catalytic oxidation of acetaldehyde. ChemCatChem, 1(2), 286-294. https://doi.org/10.1002/cctc.200900099
Homochiral conglomerates and racemic crystals in two dimensions: tartaric acid on Cu(110)
Romer, S., Behzadi, B., Fasel, R., & Ernst, K. H. (2005). Homochiral conglomerates and racemic crystals in two dimensions: tartaric acid on Cu(110). Chemistry: A European Journal, 11(14), 4149-4154. https://doi.org/10.1002/chem.200400962