Active Filters

  • (-) Keywords = surface modification
  • (-) Empa Laboratories ≠ 305 Computational Engineering
Search Results 1 - 18 of 18
  • RSS Feed
Select Page
A low-fouling, self-assembled, graft co-polymer and covalent surface coating for controlled immobilization of biologically active moieties
Mertgen, A. S., Guex, A. G., Tosatti, S., Fortunato, G., Rossi, R. M., Rottmar, M., … Zürcher, S. (2022). A low-fouling, self-assembled, graft co-polymer and covalent surface coating for controlled immobilization of biologically active moieties. Applied Surface Science, 584, 152525 (12 pp.). https://doi.org/10.1016/j.apsusc.2022.152525
Silica aerogels with tailored chemical functionality
Li, Z., Zhao, S., Koebel, M. M., & Malfait, W. J. (2020). Silica aerogels with tailored chemical functionality. Materials and Design, 193, 108833 (12 pp.). https://doi.org/10.1016/j.matdes.2020.108833
Versatile surface modification of hydrogels by surface-initiated, Cu<sup>0</sup> -mediated controlled radical polymerization
Zhang, K., Yan, W., Simic, R., Benetti, E. M., & Spencer, N. D. (2020). Versatile surface modification of hydrogels by surface-initiated, Cu0 -mediated controlled radical polymerization. ACS Applied Materials and Interfaces, 12(5), 6761-6767. https://doi.org/10.1021/acsami.9b21399
Cell membrane-inspired silicone interfaces that mitigate pro-inflammatory macrophage activation and bacterial adhesion
Qin, X. H., Senturk, B., Valentin, J., Malheiro, V., Fortunato, G., Ren, Q., … Maniura-Weber, K. (2019). Cell membrane-inspired silicone interfaces that mitigate pro-inflammatory macrophage activation and bacterial adhesion. Langmuir, 35(5), 1882-1894. https://doi.org/10.1021/acs.langmuir.8b02292
Ambient pressure drying of silica aerogels after hydrophobization with mono-, di- and tri-functional silanes and mixtures thereof
Stojanovic, A., Comesaña, S. P., Rentsch, D., Koebel, M. M., & Malfait, W. J. (2019). Ambient pressure drying of silica aerogels after hydrophobization with mono-, di- and tri-functional silanes and mixtures thereof. Microporous and Mesoporous Materials, 284, 289-295. https://doi.org/10.1016/j.micromeso.2019.04.038
Effects of various methylchlorosilanes on physicochemical properties of ambient pressure dried silica aerogels
Wu, X., Zhang, W., Li, Z., Zhang, Y., Huang, S., & Liu, Q. (2019). Effects of various methylchlorosilanes on physicochemical properties of ambient pressure dried silica aerogels. Journal of Nanoparticle Research, 21(11), 234 (13 pp.). https://doi.org/10.1007/s11051-019-4685-0
Simple green route to performance improvement of fully bio-based linseed oil coating using nanofibrillated cellulose
Veigel, S., Lems, E. M., Grüll, G., Hansmann, C., Rosenau, T., Zimmermann, T., & Gindl-Altmutter, W. (2017). Simple green route to performance improvement of fully bio-based linseed oil coating using nanofibrillated cellulose. Polymers, 9(9), 425 (13 pp.). https://doi.org/10.3390/polym9090425
Selective etching of injection molded zirconia-toughened alumina: towards osseointegrated and antibacterial ceramic implants
Flamant, Q., Caravaca, C., Meille, S., Gremillard, L., Chevalier, J., Biotteau-Deheuvels, K., … Anglada, M. (2016). Selective etching of injection molded zirconia-toughened alumina: towards osseointegrated and antibacterial ceramic implants. Acta Biomaterialia, 46, 308-322. https://doi.org/10.1016/j.actbio.2016.09.017
Dry, hydrophobic microfibrillated cellulose powder obtained in a simple procedure using alkyl ketene dimer
Yan, Y., Amer, H., Rosenau, T., Zollfrank, C., Dörrstein, J., Jobst, C., … Li, J. (2016). Dry, hydrophobic microfibrillated cellulose powder obtained in a simple procedure using alkyl ketene dimer. Cellulose, 23(2), 1189-1197. https://doi.org/10.1007/s10570-016-0887-0
Plasma enhanced CVD of organosilicon thin films on electrospun polymer nanofibers
Kedroňová, E., Zajíčková, L., Hegemann, D., Klíma, M., Michlíček, M., & Manakhov, A. (2015). Plasma enhanced CVD of organosilicon thin films on electrospun polymer nanofibers. Plasma Processes and Polymers, 12(11), 1231-1243. https://doi.org/10.1002/ppap.201400235
Surface grafting of carboxylic groups onto thermoplastic polyurethanes to reduce cell adhesion
Alves, P., Ferreira, P., Kaiser, J. P., Salk, N., Bruinink, A., de Sousa, H. C., & Gil, M. H. (2013). Surface grafting of carboxylic groups onto thermoplastic polyurethanes to reduce cell adhesion. Applied Surface Science, 283, 744-750. https://doi.org/10.1016/j.apsusc.2013.07.011
Surface grafting of a thermoplastic polyurethane with methacrylic acid by previous plasma surface activation and by ultraviolet irradiation to reduce cell adhesion
Alves, P., Pinto, S., Kaiser, J. P., Bruinink, A., de Sousa, H. C., & Gil, M. H. (2011). Surface grafting of a thermoplastic polyurethane with methacrylic acid by previous plasma surface activation and by ultraviolet irradiation to reduce cell adhesion. Colloids and Surfaces B: Biointerfaces, 82(2), 371-377. https://doi.org/10.1016/j.colsurfb.2010.09.021
In situ treatment of thermal RF plasma processed nanopowders to control their agglomeration and dispersability
Leparoux, M., Leconte, Y., Wirth, A., & Buehler, T. (2010). In situ treatment of thermal RF plasma processed nanopowders to control their agglomeration and dispersability. Plasma Chemistry and Plasma Processing, 30(6), 779-793. https://doi.org/10.1007/s11090-010-9258-z
Surface modification of thermoplastic polyurethane in order to enhance reactivity and avoid cell adhesion
Alves, P., Kaiser, J. P., Haack, J., Salk, N., Bruinink, A., de Sousa, H. C., & Gil, M. H. (2009). Surface modification of thermoplastic polyurethane in order to enhance reactivity and avoid cell adhesion. Colloid and Polymer Science, 287(12), 1469-1474. https://doi.org/10.1007/s00396-009-2116-y
Multi-functional nanocomposite plasma coatings - enabling new applications in biomaterials
Balazs, D. J., Hossain, M. M., Brombacher, E., Fortunato, G., Körner, E., & Hegemann, D. (2007). Multi-functional nanocomposite plasma coatings - enabling new applications in biomaterials. Plasma Processes and Polymers, 4(S1), S380-S385. https://doi.org/10.1002/ppap.200731004
Surface modification of nanoparticles for scratch resistant clear coatings
Barna, E., Rentsch, D., Bommer, B., Vital, A., von Trzebiatowski, O., & Graule, T. (2007). Surface modification of nanoparticles for scratch resistant clear coatings. KGK Kautschuk Gummi Kunststoffe, 60(1-2), 49-51.
Fatigue and cyclic deformation behaviour of surface-modified titanium alloys in simulated physiological media
Leinenbach, C., & Eifler, D. (2006). Fatigue and cyclic deformation behaviour of surface-modified titanium alloys in simulated physiological media. Biomaterials, 27(8), 1200-1208. https://doi.org/10.1016/j.biomaterials.2005.08.012
Fluoropolymer coating of medical grade poly(vinyl chloride) by plasma-enhanced chemical vapor deposition techniques
Balazs, D. J., Hollenstein, C., & Mathieu, H. J. (2005). Fluoropolymer coating of medical grade poly(vinyl chloride) by plasma-enhanced chemical vapor deposition techniques. Plasma Processes and Polymers, 2(2), 104-111. https://doi.org/10.1002/ppap.200400039