Active Filters

  • (-) Keywords = thermal conductivity
Search Results 1 - 20 of 35
Select Page
Effect of aging on thermal conductivity of fiber-reinforced aerogel composites: an X-ray tomography study
Iswar, S., Griffa, M., Kaufmann, R., Beltran, M., Huber, L., Brunner, S., … Malfait, W. J. (2019). Effect of aging on thermal conductivity of fiber-reinforced aerogel composites: an X-ray tomography study. Microporous and Mesoporous Materials, 278, 289-296. https://doi.org/10.1016/j.micromeso.2018.12.006
Reinforced and superinsulating silica aerogel through in situ cross-linking with silane terminated prepolymers
Iswar, S., Snellings, G. M. B. F., Zhao, S., Erni, R., Bahk, Y. K., Wang, J., … Malfait, W. J. (2018). Reinforced and superinsulating silica aerogel through in situ cross-linking with silane terminated prepolymers. Acta Materialia, 147, 322-328. https://doi.org/10.1016/j.actamat.2018.01.031
Evaluation of VIPs after mild artificial aging during 10 years: focus on the core behavior
Pons, E., Yrieix, B., & Brunner, S. (2018). Evaluation of VIPs after mild artificial aging during 10 years: focus on the core behavior. Energy and Buildings, 162, 198-207. https://doi.org/10.1016/j.enbuild.2017.12.016
Aerobrick - an aerogel-filled insulating brick
Wernery, J., Ben-Ishai, A., Binder, B., & Brunner, S. (2017). Aerobrick - an aerogel-filled insulating brick. In J. Littlewood & R. J. Howlett (Eds.), Energy procedia: Vol. 134. Sustainability in energy and buildings 2017: proceedings of the ninth KES international conference (pp. 490-498). https://doi.org/10.1016/j.egypro.2017.09.607
Superinsulating polyisocyanate based aerogels: a targeted search for the optimum solvent system
Zhu, Z., Snellings, G. M. B. F., Koebel, M. M., & Malfait, W. J. (2017). Superinsulating polyisocyanate based aerogels: a targeted search for the optimum solvent system. ACS Applied Materials and Interfaces, 9(21), 18222-18230. https://doi.org/10.1021/acsami.7b03344
Radiative heat losses in thermal conductivity measurements: a correction for linear temperature gradients
Gałązka, K., Populoh, S., Xie, W., Hulliger, J., & Weidenkaff, A. (2016). Radiative heat losses in thermal conductivity measurements: a correction for linear temperature gradients. Measurement, 90, 187-191. https://doi.org/10.1016/j.measurement.2016.04.059
Reaction of aerogel containing ceramic fibre insulation to fire exposure
Ghazi Wakili, K., & Remhof, A. (2016). Reaction of aerogel containing ceramic fibre insulation to fire exposure. Fire and Materials, 41(1), 29-39. https://doi.org/10.1002/fam.2367
Analysis of the thermal comfort properties and heat protection performance of cotton/nylon-Kermel fabrics
Kakvan, A., Shaikhzadeh Najar, S., & Psikuta, A. (2016). Analysis of the thermal comfort properties and heat protection performance of cotton/nylon-Kermel fabrics. Journal of Textiles and Polymers, 4(1), 37-44.
Half-Heusler superlattices as model systems for nanostructured thermoelectrics
Komar, P., Jaeger, T., Euler, C., Angel, E. C., Kolb, U., Müller, M. M., … Jakob, G. (2016). Half-Heusler superlattices as model systems for nanostructured thermoelectrics. Physica Status Solidi A: Applications and Materials, 213(3), 732-738. https://doi.org/10.1002/pssa.201532445
New approach to low thermal conductivity of thermal barrier protection with improved mechanical integrity
Michálek, M., Tewari, A., Blugan, G., Bowen, P., Hofmann, H., Graule, T., & Kuebler, J. (2016). New approach to low thermal conductivity of thermal barrier protection with improved mechanical integrity. Ceramics International, 42(6), 6817-6824. https://doi.org/10.1016/j.ceramint.2016.01.059
Micro-thermal CMOS-based gas quality sensing for control of spark ignition engines
Soltic, P., Biffiger, H., Prêtre, P., & Kempe, A. (2016). Micro-thermal CMOS-based gas quality sensing for control of spark ignition engines. Measurement, 91, 661-679. https://doi.org/10.1016/j.measurement.2016.05.098
Aquacasting—a new shaping concept for water based reactive tape casting
Durif, C., Frömder, C., Affolter, C., Lippmann, W., & Graule, T. (2015). Aquacasting—a new shaping concept for water based reactive tape casting. Journal of the European Ceramic Society, 35(13), 3633-3640. https://doi.org/10.1016/j.jeurceramsoc.2015.04.029
Thermal behaviour of autoclaved aerated concrete exposed to fire
Ghazi Wakili, K., Hugi, E., Karvonen, L., Schnewlin, P., & Winnefeld, F. (2015). Thermal behaviour of autoclaved aerated concrete exposed to fire. Cement and Concrete Composites, 62, 52-58. https://doi.org/10.1016/j.cemconcomp.2015.04.018
Thermal conductivity of gypsum boards beyond dehydration temperature
Ghazi Wakili, K., Koebel, M., Glaettli, T., & Hofer, M. (2015). Thermal conductivity of gypsum boards beyond dehydration temperature. Fire and Materials, 39(1), 85-94. https://doi.org/10.1002/fam.2234
Dielectric and thermal properties of cerium dioxide up to 1000 °C and the effect of the porosity for microwave processing studies
Hammoud, H., Vaucher, S., & Valdivieso, F. (2015). Dielectric and thermal properties of cerium dioxide up to 1000 °C and the effect of the porosity for microwave processing studies. Thermochimica Acta, 617, 83-89. https://doi.org/10.1016/j.tca.2015.08.011
Study on effect of blend ratio on thermal comfort properties of cotton/nylon-blended fabrics with high-performance Kermel fibre
Kakvan, A., Shaikhzadeh Najar, S., & Psikuta, A. (2015). Study on effect of blend ratio on thermal comfort properties of cotton/nylon-blended fabrics with high-performance Kermel fibre. The Journal of The Textile Institute, 106(6), 674-682. https://doi.org/10.1080/00405000.2014.934045
Transparent silicone calcium fluoride nanocomposite with improved thermal conductivity
Schneider, R., Lüthi, S. R., Albrecht, K., Brülisauer, M., Bernard, A., & Geiger, T. (2015). Transparent silicone calcium fluoride nanocomposite with improved thermal conductivity. Macromolecular Materials and Engineering, 300(1), 80-85. https://doi.org/10.1002/mame.201400172
Experimental characterisation and evaluation of the thermo-physical properties of expanded perlite—fumed silica composite for effective vacuum insulation panel (VIP) core
Alam, M., Singh, H., Brunner, S., & Naziris, C. (2014). Experimental characterisation and evaluation of the thermo-physical properties of expanded perlite—fumed silica composite for effective vacuum insulation panel (VIP) core. Energy and Buildings, 69, 442-450. https://doi.org/10.1016/j.enbuild.2013.11.027
Hints for an additional aging factor regarding the thermal performance of vacuum insulation panels with pyrogenic silica core
Brunner, S., & Ghazi Wakili, K. (2014). Hints for an additional aging factor regarding the thermal performance of vacuum insulation panels with pyrogenic silica core. Vacuum, 100, 4-6. https://doi.org/10.1016/j.vacuum.2013.07.033
Anisotropic layered media with microinclusions: thermal properties of arc-evaporation multilayer metal nitrides
Böttger, P. H. M., Gusarov, A. V., Shklover, V., Patscheider, J., & Sobiech, M. (2014). Anisotropic layered media with microinclusions: thermal properties of arc-evaporation multilayer metal nitrides. International Journal of Thermal Sciences, 77, 75-83. https://doi.org/10.1016/j.ijthermalsci.2013.10.011