Active Filters

  • (-) Keywords = thermodynamics
Search Results 1 - 18 of 18
  • RSS Feed
Select Page
Understanding catalysis - a simplified simulation of catalytic reactors for CO<sub>2</sub> reduction
Terreni, J., Borgschulte, A., Hillestad, M., & Patterson, B. D. (2020). Understanding catalysis - a simplified simulation of catalytic reactors for CO2 reduction. ChemEngineering, 4(4), 62 (16 pp.). https://doi.org/10.3390/chemengineering4040062
Moisture-induced crossover in the thermodynamic and mechanical response of hydrophilic biopolymer
Zhang, C., Coasne, B., Guyer, R., Derome, D., & Carmeliet, J. (2020). Moisture-induced crossover in the thermodynamic and mechanical response of hydrophilic biopolymer. Cellulose, 27(1), 89-99. https://doi.org/10.1007/s10570-019-02808-z
Further insights into calcium sulfoaluminate cement expansion
Hargis, C. W., Lothenbach, B., Müller, C. J., & Winnefeld, F. (2019). Further insights into calcium sulfoaluminate cement expansion. Advances in Cement Research, 31(4), 160-177. https://doi.org/10.1680/jadcr.18.00124
The role of Ga addition on the thermodynamics, kinetics, and tarnishing properties of the Au-Ag-Pd-Cu-Si bulk metallic glass forming system
Neuber, N., Gross, O., Eisenbart, M., Heiss, A., Klotz, U. E., Best, J. P., … Gallino, I. (2019). The role of Ga addition on the thermodynamics, kinetics, and tarnishing properties of the Au-Ag-Pd-Cu-Si bulk metallic glass forming system. Acta Materialia, 165, 315-326. https://doi.org/10.1016/j.actamat.2018.11.052
Synthesis and characterisation of calcium sulfoaluminate cements produced by different chemical gypsums
Telesca, A., Marroccoli, M., & Winnefeld, F. (2019). Synthesis and characterisation of calcium sulfoaluminate cements produced by different chemical gypsums. Advances in Cement Research, 31(3), 113-123. https://doi.org/10.1680/jadcr.18.00122
Melting point depression and fast diffusion in nanostructured brazing fillers confined between barrier nanolayers
Kaptay, G., Janczak-Rusch, J., & Jeurgens, L. P. H. (2016). Melting point depression and fast diffusion in nanostructured brazing fillers confined between barrier nanolayers. Journal of Materials Engineering and Performance, 25(8), 3275-3284. https://doi.org/10.1007/s11665-016-2123-3
Thermodynamics controls amorphous oxide formation: Exclusive formation of a stoichiometric amorphous (Al<SUB>0.33</SUB>Zr<SUB>0.67</SUB>)O<SUB>1.83</SUB> phase upon thermal oxidation of Al–Zr
Weller, K., Wang, Z., Jeurgens, L. P. H., & Mittemeijer, E. J. (2015). Thermodynamics controls amorphous oxide formation: Exclusive formation of a stoichiometric amorphous (Al0.33Zr0.67)O1.83 phase upon thermal oxidation of Al–Zr. Acta Materialia, 94, 134-142. https://doi.org/10.1016/j.actamat.2015.04.038
A Round Robin Test exercise on hydrogen absorption/desorption properties of a magnesium hydride based material
Moretto, P., Zlotea, C., Dolci, F., Amieiro, A., Bobet, J. L., Borgschulte, A., … Zan, J. A. (2013). A Round Robin Test exercise on hydrogen absorption/desorption properties of a magnesium hydride based material. International Journal of Hydrogen Energy, 38(16), 6704-6717. https://doi.org/10.1016/j.ijhydene.2013.03.118
Heat transfer mechanisms and models for a gypsum board exposed to fire
Weber, B. (2012). Heat transfer mechanisms and models for a gypsum board exposed to fire. International Journal of Heat and Mass Transfer, 55(5-6), 1661-1678. https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.022
Thermodynamic optimization of Bi-Ni binary system
Wang, J., Meng, Fgui, Liu, Lbin, & Jin, Zpeng. (2011). Thermodynamic optimization of Bi-Ni binary system. Transactions of Nonferrous Metals Society of China, 21(1), 139-145. https://doi.org/10.1016/S1003-6326(11)60690-0
Preliminary investigation on the fate of iron during cement hydration
Dilnesa, B. Z., Lothenbach, B., Wieland, E., Dähn, R., Wichser, A., & Scrivener, K. L. (2010). Preliminary investigation on the fate of iron during cement hydration (p. (4 pp.). Presented at the International RILEM symposium on concrete modelling – CONMOD'10. .
Thermodynamic description of the Au-Ag-Pb ternary system
Wang, J., Meng, F. G., Rong, M. H., Liu, L. B., & Jin, Z. P. (2010). Thermodynamic description of the Au-Ag-Pb ternary system. Thermochimica Acta, 505(1-2), 79-85. https://doi.org/10.1016/j.tca.2010.04.003
Martensitic-austenitic 9-12% Cr steels-Alloy design, microstructural stability and mechanical properties
Klotz, U. E., Solenthaler, C., & Uggowitzer, P. J. (2008). Martensitic-austenitic 9-12% Cr steels-Alloy design, microstructural stability and mechanical properties. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 476(1-2), 186-194. https://doi.org/10.1016/j.msea.2007.04.093
The AFm phase in Portland cement
Matschei, T., Lothenbach, B., & Glasser, F. P. (2007). The AFm phase in Portland cement. Cement and Concrete Research, 37(2), 118-130. https://doi.org/10.1016/j.cemconres.2006.10.010
The role of calcium carbonate in cement hydration
Matschei, T., Lothenbach, B., & Glasser, F. P. (2007). The role of calcium carbonate in cement hydration. Cement and Concrete Research, 37(4), 551-558. https://doi.org/10.1016/j.cemconres.2006.10.013
Thermodynamic properties of Portland cement hydrates in the system CaO-Al<SUB>2</SUB>O<SUB>3</SUB>-SiO<SUB>2</SUB>-CaSO<SUB>4</SUB>-CaCO<SUB>3</SUB>-H<SUB>2</SUB>O
Matschei, T., Lothenbach, B., & Glasser, F. P. (2007). Thermodynamic properties of Portland cement hydrates in the system CaO-Al2O3-SiO2-CaSO4-CaCO3-H2O. Cement and Concrete Research, 37(10), 1379-1410. https://doi.org/10.1016/j.cemconres.2007.06.002
Thermodynamics of cement hydration
Matschei, T. (2007). Thermodynamics of cement hydration [Doctoral dissertation]. University of Aberdeen.
Thermodynamic assessment of the Sn-Ti system
Liu, C., Klotz, U. E., Uggowitzer, P. J., & Löffler, J. F. (2005). Thermodynamic assessment of the Sn-Ti system. Monatshefte für Chemie, 136(11), 1921-1930. https://doi.org/10.1007/s00706-005-0392-x