Active Filters

  • (-) Keywords = titanium dioxide
Search Results 1 - 20 of 21
Select Page
Multifunctional mats by antimicrobial nanoparticles decoration for bioinspired smart wound dressing solutions
Avossa, J., Pota, G., Vitiello, G., Macagnano, A., Zanfardino, A., Di Napoli, M., … Luciani, G. (2021). Multifunctional mats by antimicrobial nanoparticles decoration for bioinspired smart wound dressing solutions. Materials Science and Engineering C: Biomimetic Materials, Sensors and Systems, 123, 111954 (11 pp.). https://doi.org/10.1016/j.msec.2021.111954
Polyhydroxyoctanoate films reinforced with titanium dioxide microfibers for biomedical application
Malagurski, I., Frison, R., Maurya, A. K., Neels, A., Andjelkovic, B., Senthamaraikannan, R., … Nikodinovic-Runic, J. (2021). Polyhydroxyoctanoate films reinforced with titanium dioxide microfibers for biomedical application. Materials Letters, 285, 129100 (5 pp.). https://doi.org/10.1016/j.matlet.2020.129100
Cobalt-citrate metal-organic-framework UTSA-16 on TiO<sub>2</sub> nanoparticles
Tseng, M. Y., Su, Y. H., Lai, Y. S., Pan, F., & Kung, P. Y. (2020). Cobalt-citrate metal-organic-framework UTSA-16 on TiO2 nanoparticles. In IOP conference series: materials science and engineering: Vol. 720. 4th international conference on optics in materials, energy, and technologies, 2019 (ICOMET-2019) 24-28 June 2019, Tainan, Taiwan (p. 012008). https://doi.org/10.1088/1757-899X/720/1/012008
Identifying ecotoxicological descriptors to enable predictive hazard assessments of nano-TiO<sub>2</sub> from a meta-analysis of ecotoxicological data
Cai, Y., Nowack, B., & Wigger, H. (2019). Identifying ecotoxicological descriptors to enable predictive hazard assessments of nano-TiO2 from a meta-analysis of ecotoxicological data. NanoImpact, 15, 100180 (9 pp.). https://doi.org/10.1016/j.impact.2019.100180
Atomic layer deposition of titanium dioxide on multi-walled carbon nanotubes for ammonia gas sensing
Kaushik, P., Eliáš, M., Michalička, J., Hegemann, D., Pytlíček, Z., Nečas, D., & Zajíčková, L. (2019). Atomic layer deposition of titanium dioxide on multi-walled carbon nanotubes for ammonia gas sensing. Surface and Coatings Technology, 370, 235-243. https://doi.org/10.1016/j.surfcoat.2019.04.031
Highly efficient UV protection of the biomaterial wood by a transparent TiO<sub>2</sub>/Ce xerogel
Guo, H., Klose, D., Hou, Y., Jeschke, G., & Burgert, I. (2017). Highly efficient UV protection of the biomaterial wood by a transparent TiO2/Ce xerogel. ACS Applied Materials and Interfaces, 9(44), 39040-39047. https://doi.org/10.1021/acsami.7b12574
Branched poly(ethyleneimine): a versatile scaffold for patterning polymer brushes by means of remote photocatalytic lithography
Panzarasa, G., Dübner, M., Soliveri, G., Edler, M., & Griesser, T. (2017). Branched poly(ethyleneimine): a versatile scaffold for patterning polymer brushes by means of remote photocatalytic lithography. Nanotechnology, 28(39), 395302 (6 pp.). https://doi.org/10.1088/1361-6528/aa8108
Sculpturing patterns of plasmonic silver nanoprisms by means of photocatalytic lithography
Panzarasa, G., Soliveri, G., Marra, G., Meda, L., Savoini, A., Ardizzone, S., & Salvalaggio, M. (2017). Sculpturing patterns of plasmonic silver nanoprisms by means of photocatalytic lithography. Nanotechnology, 28(15), 155302 (7 pp.). https://doi.org/10.1088/1361-6528/aa631b
Crafting positive/negative patterns and nanopillars of polymer brushes by photocatalytic lithography
Panzarasa, G., Soliveri, G., & Ardizzone, S. (2016). Crafting positive/negative patterns and nanopillars of polymer brushes by photocatalytic lithography. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 506, 833-839. https://doi.org/10.1016/j.colsurfa.2016.07.071
Combinatorial characterization of TiO<SUB>2</SUB> chemical vapor deposition utilizing titanium isopropoxide
Reinke, M., Ponomarev, E., Kuzminykh, Y., & Hoffmann, P. (2015). Combinatorial characterization of TiO2 chemical vapor deposition utilizing titanium isopropoxide. ACS Combinatorial Science, 17(7), 413-420. https://doi.org/10.1021/acscombsci.5b00040
Selective growth of titanium dioxide by low-temperature chemical vapor deposition
Reinke, M., Kuzminykh, Y., & Hoffmann, P. (2015). Selective growth of titanium dioxide by low-temperature chemical vapor deposition. ACS Applied Materials and Interfaces, 7(18), 9736-9743. https://doi.org/10.1021/acsami.5b01561
XAS study of TiO<SUB>2</SUB>-based nanomaterials
Schneider, K., Zajac, D., Sikora, M., Kapusta, C., Michalow-Mauke, K., Graule, T., & Rekas, M. (2015). XAS study of TiO2-based nanomaterials. Radiation Physics and Chemistry, 112, 195-198. https://doi.org/10.1016/j.radphyschem.2015.03.010
Synthesis of metabolites of paracetamol and cocaine via photooxidation on TiO<SUB>2</SUB> catalyzed by UV light
Raoof, H., Mielczarek, P., Michalow, K., Rekas, M., & Silberring, J. (2013). Synthesis of metabolites of paracetamol and cocaine via photooxidation on TiO2 catalyzed by UV light. Journal of Photochemistry and Photobiology B: Biology, 118, 49-57. https://doi.org/10.1016/j.jphotobiol.2012.10.013
AC electrical properties of TiO<SUB>2</SUB> and Magnéli phases, Ti<SUB>n</SUB>O<SUB>2n − 1</SUB>
Regonini, D., Adamaki, V., Bowen, C. R., Pennock, S. R., Taylor, J., & Dent, A. C. E. (2012). AC electrical properties of TiO2 and Magnéli phases, TinO2n − 1. Solid State Ionics, 229, 38-44. https://doi.org/10.1016/j.ssi.2012.10.003
TiO<SUB>2</SUB> thick films supported on reticulated macroporous Al<SUB>2</SUB>O<SUB>3</SUB> foams and their photoactivity in phenol mineralization
Vargová, M., Plesch, G., Vogt, U. F., Zahoran, M., Gorbár, M., & Jesenák, K. (2011). TiO2 thick films supported on reticulated macroporous Al2O3 foams and their photoactivity in phenol mineralization. Applied Surface Science, 257(10), 4678-4684. https://doi.org/10.1016/j.apsusc.2010.12.121
Quick screening method for the photocatalytic activity of textile fibers and fabrics
Ritter, A., Reifler, F. A., & Michel, E. (2010). Quick screening method for the photocatalytic activity of textile fibers and fabrics. Textile Research Journal, 80(7), 604-610. https://doi.org/10.1177/0040517509349786
Porosity and microstructure of plasma deposited TiO<SUB>2</SUB> thin films
Borrás, A., Sánchez-Valencia, J. R., Garrido-Molinero, J., Barranco, A., & González-Elipe, A. R. (2009). Porosity and microstructure of plasma deposited TiO2 thin films. Microporous and Mesoporous Materials, 118(1-3), 314-324. https://doi.org/10.1016/j.micromeso.2008.09.002
Flame synthesis of TiO<SUB>2</SUB> nanoparticles with high photocatalytic activity
Akurati, K. K., Vital, A., Fortunato, G., Hany, R., Nueesch, F., & Graule, T. (2007). Flame synthesis of TiO2 nanoparticles with high photocatalytic activity. Solid State Sciences, 9(3-4), 247-257. https://doi.org/10.1016/j.solidstatesciences.2006.12.004
Synthesis of non-aggregated titania nanoparticles in atmospheric pressure diffusion flames
Akurati, K. K., Vital, A., Klotz, U. E., Bommer, B., Graule, T., & Winterer, M. (2006). Synthesis of non-aggregated titania nanoparticles in atmospheric pressure diffusion flames. Powder Technology, 165(2), 73-82. https://doi.org/10.1016/j.powtec.2006.03.019
UV absorptance of titanium dioxide thin films by plasma enhanced deposition from mixtures of oxygen and titanium-tetrakis-isopropoxide
Sonnenfeld, A., Hauert, R., & von Rohr, P. R. (2006). UV absorptance of titanium dioxide thin films by plasma enhanced deposition from mixtures of oxygen and titanium-tetrakis-isopropoxide. Plasma Chemistry and Plasma Processing, 26(3), 319-334. https://doi.org/10.1007/s11090-006-9022-6