Active Filters

  • (-) Keywords = titanium dioxide
  • (-) Keywords ≠ nanomaterials
Search Results 1 - 20 of 23
Select Page
Theory and experiment on SERS sensitivity tuning of TiO<sub>2</sub> aerogels based on surface oxygen vacancy engineering
Liu, W., Zhao, Z., Yuan, M., Wang, Z., Shang, S., Ye, X., … Cui, S. (2024). Theory and experiment on SERS sensitivity tuning of TiO2 aerogels based on surface oxygen vacancy engineering. Applied Surface Science, 655, 159561 (7 pp.). https://doi.org/10.1016/j.apsusc.2024.159561
Aerosol-assisted deposition for TiO<sub>2</sub> immobilization on photocatalytic fibrous filters for VOC degradation
Drdova, S., Giannakou, M., Jiang, F., Lin, L., Sivaraman, D., Toth, R., … Wang, J. (2022). Aerosol-assisted deposition for TiO2 immobilization on photocatalytic fibrous filters for VOC degradation. Frontiers in Chemistry, 10, 887431 (17 pp.). https://doi.org/10.3389/fchem.2022.887431
Approach toward <em>in vitro</em>-based human toxicity effect factors for the life cycle impact assessment of inhaled low-solubility particles
Romeo, D., Hischier, R., Nowack, B., & Wick, P. (2022). Approach toward in vitro-based human toxicity effect factors for the life cycle impact assessment of inhaled low-solubility particles. Environmental Science and Technology, 56(12), 8552-8560. https://doi.org/10.1021/acs.est.2c01816
Multifunctional mats by antimicrobial nanoparticles decoration for bioinspired smart wound dressing solutions
Avossa, J., Pota, G., Vitiello, G., Macagnano, A., Zanfardino, A., Di Napoli, M., … Luciani, G. (2021). Multifunctional mats by antimicrobial nanoparticles decoration for bioinspired smart wound dressing solutions. Materials Science and Engineering C: Biomimetic Materials, Sensors and Systems, 123, 111954 (11 pp.). https://doi.org/10.1016/j.msec.2021.111954
Polyhydroxyoctanoate films reinforced with titanium dioxide microfibers for biomedical application
Malagurski, I., Frison, R., Maurya, A. K., Neels, A., Andjelkovic, B., Senthamaraikannan, R., … Nikodinovic-Runic, J. (2021). Polyhydroxyoctanoate films reinforced with titanium dioxide microfibers for biomedical application. Materials Letters, 285, 129100 (5 pp.). https://doi.org/10.1016/j.matlet.2020.129100
Cobalt-citrate metal-organic-framework UTSA-16 on TiO&lt;sub&gt;2&lt;/sub&gt; nanoparticles
Tseng, M. Y., Su, Y. H., Lai, Y. S., Pan, F., & Kung, P. Y. (2020). Cobalt-citrate metal-organic-framework UTSA-16 on TiO2 nanoparticles. In IOP conference series: materials science and engineering: Vol. 720. 4th international conference on optics in materials, energy, and technologies, 2019 (ICOMET-2019) 24-28 June 2019, Tainan, Taiwan (p. 012008 (7 pp.). https://doi.org/10.1088/1757-899X/720/1/012008
Atomic layer deposition of titanium dioxide on multi-walled carbon nanotubes for ammonia gas sensing
Kaushik, P., Eliáš, M., Michalička, J., Hegemann, D., Pytlíček, Z., Nečas, D., & Zajíčková, L. (2019). Atomic layer deposition of titanium dioxide on multi-walled carbon nanotubes for ammonia gas sensing. Surface and Coatings Technology, 370, 235-243. https://doi.org/10.1016/j.surfcoat.2019.04.031
Highly efficient UV protection of the biomaterial wood by a transparent TiO<sub>2</sub>/Ce xerogel
Guo, H., Klose, D., Hou, Y., Jeschke, G., & Burgert, I. (2017). Highly efficient UV protection of the biomaterial wood by a transparent TiO2/Ce xerogel. ACS Applied Materials and Interfaces, 9(44), 39040-39047. https://doi.org/10.1021/acsami.7b12574
Branched poly(ethyleneimine): a versatile scaffold for patterning polymer brushes by means of remote photocatalytic lithography
Panzarasa, G., Dübner, M., Soliveri, G., Edler, M., & Griesser, T. (2017). Branched poly(ethyleneimine): a versatile scaffold for patterning polymer brushes by means of remote photocatalytic lithography. Nanotechnology, 28(39), 395302 (6 pp.). https://doi.org/10.1088/1361-6528/aa8108
Sculpturing patterns of plasmonic silver nanoprisms by means of photocatalytic lithography
Panzarasa, G., Soliveri, G., Marra, G., Meda, L., Savoini, A., Ardizzone, S., & Salvalaggio, M. (2017). Sculpturing patterns of plasmonic silver nanoprisms by means of photocatalytic lithography. Nanotechnology, 28(15), 155302 (7 pp.). https://doi.org/10.1088/1361-6528/aa631b
Crafting positive/negative patterns and nanopillars of polymer brushes by photocatalytic lithography
Panzarasa, G., Soliveri, G., & Ardizzone, S. (2016). Crafting positive/negative patterns and nanopillars of polymer brushes by photocatalytic lithography. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 506, 833-839. https://doi.org/10.1016/j.colsurfa.2016.07.071
Combinatorial characterization of TiO<SUB>2</SUB> chemical vapor deposition utilizing titanium isopropoxide
Reinke, M., Ponomarev, E., Kuzminykh, Y., & Hoffmann, P. (2015). Combinatorial characterization of TiO2 chemical vapor deposition utilizing titanium isopropoxide. ACS Combinatorial Science, 17(7), 413-420. https://doi.org/10.1021/acscombsci.5b00040
Selective growth of titanium dioxide by low-temperature chemical vapor deposition
Reinke, M., Kuzminykh, Y., & Hoffmann, P. (2015). Selective growth of titanium dioxide by low-temperature chemical vapor deposition. ACS Applied Materials and Interfaces, 7(18), 9736-9743. https://doi.org/10.1021/acsami.5b01561
XAS study of TiO<SUB>2</SUB>-based nanomaterials
Schneider, K., Zajac, D., Sikora, M., Kapusta, C., Michalow-Mauke, K., Graule, T., & Rekas, M. (2015). XAS study of TiO2-based nanomaterials. Radiation Physics and Chemistry, 112, 195-198. https://doi.org/10.1016/j.radphyschem.2015.03.010
Synthesis of metabolites of paracetamol and cocaine via photooxidation on TiO<SUB>2</SUB> catalyzed by UV light
Raoof, H., Mielczarek, P., Michalow, K., Rekas, M., & Silberring, J. (2013). Synthesis of metabolites of paracetamol and cocaine via photooxidation on TiO2 catalyzed by UV light. Journal of Photochemistry and Photobiology B: Biology, 118, 49-57. https://doi.org/10.1016/j.jphotobiol.2012.10.013
Drug metabolism simulation using TiO<sub>2</sub>/UV system
Raoof, H., Michalow, K. A., & Silberring, J. (2012). Drug metabolism simulation using TiO2/UV system. In S. König (Ed.), Biochemistry research trends. Biomolecular mass spectrometry. Tips from the bench (pp. 139-152). Nova Science Publishers, Inc.
AC electrical properties of TiO<SUB>2</SUB> and Magnéli phases, Ti<SUB>n</SUB>O<SUB>2n − 1</SUB>
Regonini, D., Adamaki, V., Bowen, C. R., Pennock, S. R., Taylor, J., & Dent, A. C. E. (2012). AC electrical properties of TiO2 and Magnéli phases, TinO2n − 1. Solid State Ionics, 229, 38-44. https://doi.org/10.1016/j.ssi.2012.10.003
TiO<SUB>2</SUB> thick films supported on reticulated macroporous Al<SUB>2</SUB>O<SUB>3</SUB> foams and their photoactivity in phenol mineralization
Vargová, M., Plesch, G., Vogt, U. F., Zahoran, M., Gorbár, M., & Jesenák, K. (2011). TiO2 thick films supported on reticulated macroporous Al2O3 foams and their photoactivity in phenol mineralization. Applied Surface Science, 257(10), 4678-4684. https://doi.org/10.1016/j.apsusc.2010.12.121
Quick screening method for the photocatalytic activity of textile fibers and fabrics
Ritter, A., Reifler, F. A., & Michel, E. (2010). Quick screening method for the photocatalytic activity of textile fibers and fabrics. Textile Research Journal, 80(7), 604-610. https://doi.org/10.1177/0040517509349786
Porosity and microstructure of plasma deposited TiO<SUB>2</SUB> thin films
Borrás, A., Sánchez-Valencia, J. R., Garrido-Molinero, J., Barranco, A., & González-Elipe, A. R. (2009). Porosity and microstructure of plasma deposited TiO2 thin films. Microporous and Mesoporous Materials, 118(1-3), 314-324. https://doi.org/10.1016/j.micromeso.2008.09.002