Active Filters

  • (-) Keywords = titanium nitride
Search Results 1 - 18 of 18
  • RSS Feed
Select Page
Plasmonic nanofluids: enhancing photothermal gradients toward liquid robots
Bevione, M., Chiolerio, A., & Tagliabue, G. (2023). Plasmonic nanofluids: enhancing photothermal gradients toward liquid robots. ACS Applied Materials and Interfaces, 15(43), 50106-50115. https://doi.org/10.1021/acsami.3c06859
Overcoming the high-voltage limitations of Li-Ion batteries using a titanium nitride current collector
Wang, S., Kravchyk, K. V., Filippin, A. N., Widmer, R., Tiwari, A. N., Buecheler, S., … Kovalenko, M. V. (2019). Overcoming the high-voltage limitations of Li-Ion batteries using a titanium nitride current collector. ACS Applied Energy Materials, 2(2), 974-978. https://doi.org/10.1021/acsaem.8b01771
Aluminum chloride-graphite batteries with flexible current collectors prepared from earth-abundant elements
Wang, S., Kravchyk, K. V., Filippin, A. N., Müller, U., Tiwari, A. N., Buecheler, S., … Kovalenko, M. V. (2018). Aluminum chloride-graphite batteries with flexible current collectors prepared from earth-abundant elements. Advanced Science, 5(4), 1700712 (6 pp.). https://doi.org/10.1002/advs.201700712
TiN-buffered substrates for photoelectrochemical measurements of oxynitride thin films
Pichler, M., Pergolesi, D., Landsmann, S., Chawla, V., Michler, J., Döbeli, M., … Lippert, T. (2016). TiN-buffered substrates for photoelectrochemical measurements of oxynitride thin films. Applied Surface Science, 369, 67-75. https://doi.org/10.1016/j.apsusc.2016.01.197
Single crystalline oxygen-free titanium nitride by XPS
Jaeger, D., & Patscheider, J. (2013). Single crystalline oxygen-free titanium nitride by XPS. Surface Science Spectra, 20(1), 1-8. https://doi.org/10.1116/11.20121107
The Si<sub>3</sub>N<sub>4</sub>/TiN interface: 1. TiN(001) grown and analyzed <em>in situ</em> using angle-resolved X-ray photoelectron spectroscopy
Haasch, R. T., Patscheider, J., Hellgren, N., Petrov, I., & Greene, J. E. (2012). The Si3N4/TiN interface: 1. TiN(001) grown and analyzed in situ using angle-resolved X-ray photoelectron spectroscopy. Surface Science Spectra, 19(1), 33-41. https://doi.org/10.1116/11.20121001
The Si<sub>3</sub>N<sub>4</sub>/TiN interface: 2. Si<sub>3</sub>N<sub>4</sub>/TiN(001) grown with a ―7 V substrate bias and analyzed <em>in situ</em> using angle-resolved X-ray photoelectron spec
Haasch, R. T., Patscheider, J., Hellgren, N., Petrov, I., & Greene, J. E. (2012). The Si3N4/TiN interface: 2. Si3N4/TiN(001) grown with a ―7 V substrate bias and analyzed in situ using angle-resolved X-ray photoelectron spectroscopy. Surface Science Spectra, 19(1), 42-51. https://doi.org/10.1116/11.20121002
The Si<sub>3</sub>N<sub>4</sub>/TiN interface: 3. Si<sub>3</sub>N<sub>4</sub>/TiN(001) grown with a ―150 V substrate bias and analyzed <em>in situ</em> using angle-resolved X-ray photoelectron sp
Haasch, R. T., Patscheider, J., Hellgren, N., Petrov, I., & Greene, J. E. (2012). The Si3N4/TiN interface: 3. Si3N4/TiN(001) grown with a ―150 V substrate bias and analyzed in situ using angle-resolved X-ray photoelectron spectroscopy. Surface Science Spectra, 19(1), 52-61. https://doi.org/10.1116/11.20121003
The Si<sub>3</sub>N<sub>4</sub>/TiN interface: 4. Si<sub>3</sub>N<sub>4</sub>/TiN(001) grown with a ―250 V substrate bias and analyzed <em>in situ</em> using angle-resolved X-ray photoelectron sp
Haasch, R. T., Patscheider, J., Hellgren, N., Petrov, I., & Greene, J. E. (2012). The Si3N4/TiN interface: 4. Si3N4/TiN(001) grown with a ―250 V substrate bias and analyzed in situ using angle-resolved X-ray photoelectron spectroscopy. Surface Science Spectra, 19(1), 62-71. https://doi.org/10.1116/11.20121004
The Si<sub>3</sub>N<sub>4</sub>/TiN interface: 5. TiN/Si<sub>3</sub>N<sub>4</sub> grown and analyzed <em>in situ</em> using angle-resolved X-ray photoelectron spectroscopy
Haasch, R. T., Patscheider, J., Hellgren, N., Petrov, I., & Greene, J. E. (2012). The Si3N4/TiN interface: 5. TiN/Si3N4 grown and analyzed in situ using angle-resolved X-ray photoelectron spectroscopy. Surface Science Spectra, 19(1), 72-81. https://doi.org/10.1116/11.20121005
The Si<sub>3</sub>N<sub>4</sub>/TiN interface: 6. Si/TiN(001) grown and analyzed <em>in situ</em> using angle-resolved X-ray photoelectron spectroscopy
Haasch, R. T., Patscheider, J., Hellgren, N., Petrov, I., & Greene, J. E. (2012). The Si3N4/TiN interface: 6. Si/TiN(001) grown and analyzed in situ using angle-resolved X-ray photoelectron spectroscopy. Surface Science Spectra, 19(1), 82-91. https://doi.org/10.1116/11.20121006
The Si<sub>3</sub>N<sub>4</sub>/TiN interface: 7. Ti/TiN(001) grown and analyzed <em>in situ</em> using X-ray photoelectron spectroscopy
Haasch, R. T., Patscheider, J., Hellgren, N., Petrov, I., & Greene, J. E. (2012). The Si3N4/TiN interface: 7. Ti/TiN(001) grown and analyzed in situ using X-ray photoelectron spectroscopy. Surface Science Spectra, 19(1), 92-97. https://doi.org/10.1116/11.20121007
A complete and self-consistent evaluation of XPS spectra of TiN
Jaeger, D., & Patscheider, J. (2012). A complete and self-consistent evaluation of XPS spectra of TiN. Journal of Electron Spectroscopy and Related Phenomena, 185(11), 523-534. https://doi.org/10.1016/j.elspec.2012.10.011
Interface investigations on titanium nitride bilayer systems
Jaeger, D. A. (2012). Interface investigations on titanium nitride bilayer systems [Doctoral dissertation, EPF Lausanne]. https://doi.org/10.5075/epfl-thesis-5509
Transmission electron microscopy characterization of TiN/SiN<SUB>x</SUB> multilayered coatings plastically deformed by nanoindentation
Parlinska-Wojtan, M., Meier, S., & Patscheider, J. (2010). Transmission electron microscopy characterization of TiN/SiNx multilayered coatings plastically deformed by nanoindentation. Thin Solid Films, 518(17), 4890-4897. https://doi.org/10.1016/j.tsf.2010.02.064
Improving the properties of titanium nitride by incorporation of silicon
Diserens, M., Patscheider, J., & Lévy, F. (1998). Improving the properties of titanium nitride by incorporation of silicon. Surface and Coatings Technology, 108-109, 241-246. https://doi.org/10.1016/S0257-8972(98)00560-X
Laminar Si<sub>3</sub>N<sub>4</sub>-TiN hot-pressed ceramic composites
Yaroshenko, V., Orlovskaya, N., Einarsrud, M. A., Berroth, K., & Kovylayev, V. (1997). Laminar Si3N4-TiN hot-pressed ceramic composites. P. Abelard, J. Baxter, & D. Bortzmeyer (Eds.), Key engineering materials: Vol. 132-136. (pp. 2017-2020). Presented at the Fifth conference of the European ceramic society (ECerS-V). https://doi.org/10.4028/www.scientific.net/KEM.132-136.2017
Plasma-induced deposition of titanium nitride from TiCl<sub>4</sub> in a direct current glow discharge: control of the chlorine content and gas-phase nucleation
Patscheider, J., Shizhi, L., & Vepřek, S. (1996). Plasma-induced deposition of titanium nitride from TiCl4 in a direct current glow discharge: control of the chlorine content and gas-phase nucleation. Plasma Chemistry and Plasma Processing, 16(3), 341-363. https://doi.org/10.1007/Bf01447150