Active Filters

  • (-) Keywords = water splitting
Search Results 1 - 14 of 14
  • RSS Feed
Select Page
Biomimicry designs for photoelectrochemical systems: strategies to improve light delivery efficiency
Brillas, E., Serrà, A., & Garcia-Segura, S. (2021). Biomimicry designs for photoelectrochemical systems: strategies to improve light delivery efficiency. Current Opinion in Electrochemistry, 26, 100660 (10 pp.). https://doi.org/10.1016/j.coelec.2020.100660
Ab initio studies of bimetallic-doped {0001} hematite surface for enhanced photoelectrochemical water splitting
Simfukwe, J., Mapasha, R. E., Braun, A., & Diale, M. (2021). Ab initio studies of bimetallic-doped {0001} hematite surface for enhanced photoelectrochemical water splitting. Catalysts, 11(8), 940 (13 pp.). https://doi.org/10.3390/catal11080940
Thiol-amine-based solution processing of Cu<sub>2</sub>S thin films for photoelectrochemical water splitting
Zhang, X., Yang, W., Niu, W., Adams, P., Siol, S., Wang, Z., & Tilley, S. D. (2021). Thiol-amine-based solution processing of Cu2S thin films for photoelectrochemical water splitting. ChemSusChem. https://doi.org/10.1002/cssc.202101347
Tuning the Co oxidation state in Ba&lt;sub&gt;0.5&lt;/sub&gt;Sr&lt;sub&gt;0.5&lt;/sub&gt;Co&lt;sub&gt;0.8&lt;/sub&gt;Fe&lt;sub&gt;0.2&lt;/sub&gt;O&lt;sub&gt;3-δ&lt;/sub&gt; by flame spray synthesis towards high oxygen evolution reaction activity
Aegerter, D., Borlaf, M., Fabbri, E., Clark, A. H., Nachtegaal, M., Graule, T., & Schmidt, T. J. (2020). Tuning the Co oxidation state in Ba0.5Sr0.5Co0.8Fe0.2O3-δ by flame spray synthesis towards high oxygen evolution reaction activity. Catalysts, 10(9), 984 (16 pp.). https://doi.org/10.3390/catal10090984
Scaling up electrodes for photoelectrochemical water splitting: fabrication process and performance of 40 cm&lt;sup&gt;2&lt;/sup&gt; LaTiO&lt;sub&gt;2&lt;/sub&gt;N photoanodes
Dilger, S., Trottmann, M., & Pokrant, S. (2019). Scaling up electrodes for photoelectrochemical water splitting: fabrication process and performance of 40 cm2 LaTiO2N photoanodes. ChemSusChem, 12(9), 1931-1938. https://doi.org/10.1002/cssc.201802645
Tailoring structured WGS catalysts: impact of multilayered concept on the water surface interactions
González-Castaño, M., Le Saché, E., Ivanova, S., Romero-Sarria, F., Centeno, M. A., & Odriozola, J. A. (2018). Tailoring structured WGS catalysts: impact of multilayered concept on the water surface interactions. Applied Catalysis B: Environmental, 222, 124-132. https://doi.org/10.1016/j.apcatb.2017.10.018
Design of molecular water oxidation catalysts stabilized by ultrathin inorganic overlayers - is active site protection necessary?
Sévery, L., Siol, S., & Tilley, S. D. (2018). Design of molecular water oxidation catalysts stabilized by ultrathin inorganic overlayers - is active site protection necessary? Inorganics, 6(4), 105 (14 pp.). https://doi.org/10.3390/inorganics6040105
Controlled design of functional nano-coatings: reduction of loss mechanisms in photoelectrochemical water splitting
Landsmann, S., Surace, Y., Trottmann, M., Dilger, S., Weidenkaff, A., & Pokrant, S. (2016). Controlled design of functional nano-coatings: reduction of loss mechanisms in photoelectrochemical water splitting. ACS Applied Materials and Interfaces, 8(19), 12149-12157. https://doi.org/10.1021/acsami.6b01129
Sub-stoichiometric functionally graded titania fibres for water-splitting applications
Adamaki, V., Sergejevs, A., Clarke, C., Clemens, F., Marken, F., & Bowen, C. R. (2015). Sub-stoichiometric functionally graded titania fibres for water-splitting applications. Journal of Semiconductors, 36(6), 063001 (6 pp.). https://doi.org/10.1088/1674-4926/36/6/063001
Design guidelines for high-performance particle-based photoanodes for water splitting: lanthanum titanium oxynitride as a model
Landsmann, S., Maegli, A. E., Trottmann, M., Battaglia, C., Weidenkaff, A., & Pokrant, S. (2015). Design guidelines for high-performance particle-based photoanodes for water splitting: lanthanum titanium oxynitride as a model. ChemSusChem, 8(20), 3451-3458. https://doi.org/10.1002/cssc.201500830
Between photocatalysis and photosynthesis: synchrotron spectroscopy methods on molecules and materials for solar hydrogen generation
Bora, D. K., Hu, Y., Thiess, S., Erat, S., Feng, X., Mukherjee, S., … Braun, A. (2013). Between photocatalysis and photosynthesis: synchrotron spectroscopy methods on molecules and materials for solar hydrogen generation. Journal of Electron Spectroscopy and Related Phenomena, 190(art A), 93-105. https://doi.org/10.1016/j.elspec.2012.11.009
Perovskite-related oxynitrides in photocatalysis
Pokrant, S., Maegli, A. E., Chiarello, G. L., & Weidenkaff, A. (2013). Perovskite-related oxynitrides in photocatalysis. Chimia, 67(3), 162-167. https://doi.org/10.2533/chimia.2013.162
Electrospun TiO<SUB>2</SUB> fiber composite photoelectrodes for water splitting
Regonini, D., Teloeken, A. C., Alves, A. K., Berutti, F. A., Gajda-Schrantz, K., Bergmann, C. P., … Clemens, F. (2013). Electrospun TiO2 fiber composite photoelectrodes for water splitting. ACS Applied Materials and Interfaces, 5(22), 11747-11755. https://doi.org/10.1021/am403437q
Iron resonant photoemission spectroscopy on anodized hematite points to electron hole doping during anodization
Braun, A., Chen, Q., Flak, D., Fortunato, G., Gajda-Schrantz, K., Grätzel, M., … Zhu, J. (2012). Iron resonant photoemission spectroscopy on anodized hematite points to electron hole doping during anodization. ChemPhysChem, 13(12), 2937-2944. https://doi.org/10.1002/cphc.201200074