Active Filters

  • (-) Empa Laboratories = 302 Cellulose & Wood Materials
Search Results 1 - 20 of 781

Pages

  • RSS Feed
Select Page
Enhancing interface connectivity for multifunctional magnetic carbon aerogels: an in situ growth strategy of metal-organic frameworks on cellulose nanofibrils
Qiao, J., Song, Q., Zhang, X., Zhao, S., Liu, J., Nyström, G., & Zeng, Z. (2024). Enhancing interface connectivity for multifunctional magnetic carbon aerogels: an in situ growth strategy of metal-organic frameworks on cellulose nanofibrils. Advanced Science. https://doi.org/10.1002/advs.202400403
Benchmarking the humidity-dependent mechanical response of (nano)fibrillated cellulose and dissolved polysaccharides as sustainable sand amendments
Dali, M. H. A., Abidnejad, R., Salim, M. H., Bhattarai, M., Imani, M., Rojas, O. J., … Tardy, B. L. (2024). Benchmarking the humidity-dependent mechanical response of (nano)fibrillated cellulose and dissolved polysaccharides as sustainable sand amendments. Biomacromolecules. https://doi.org/10.1021/acs.biomac.3c01294
Additive manufacturing of nanocellulose aerogels with structure-oriented thermal, mechanical, and biological properties
Sivaraman, D., Nagel, Y., Siqueira, G., Chansoria, P., Avaro, J., Neels, A., … Zhao, S. (2024). Additive manufacturing of nanocellulose aerogels with structure-oriented thermal, mechanical, and biological properties. Advanced Science. https://doi.org/10.1002/advs.202307921
Versatile mechanically tunable hydrogels for therapeutic delivery applications
Sun, Q., Tao, S., Bovone, G., Han, G., Deshmukh, D., Tibbitt, M. W., … Fischer, P. (2024). Versatile mechanically tunable hydrogels for therapeutic delivery applications. Advanced Healthcare Materials. https://doi.org/10.1002/adhm.202304287
Fassadenschalung aus primär verblautem Käferholz. Käferholz - vom Buchdrucker (<em>Ips typographus</em>) befallene Fichte (<em>Picea abies</em>) und ihre Eigenschaften
Künniger, T. (2024). Fassadenschalung aus primär verblautem Käferholz. Käferholz - vom Buchdrucker (Ips typographus) befallene Fichte (Picea abies) und ihre Eigenschaften. Holz-Zentralblatt, 150(9), 154-155.
Degraded paper: stabilization and strengthening through nanocellulose application
Gmelch, L., D’Emilio, E. M. L., Geiger, T., & Effner, C. (2024). Degraded paper: stabilization and strengthening through nanocellulose application. Journal of Paper Conservation. https://doi.org/10.1080/18680860.2024.2317831
Hybrid amyloid-chitin nanofibrils for magnetic and catalytic aerogels
Peydayesh, M., Boschi, E., Bagnani, M., Tay, D., Donat, F., Almohammadi, H., … Mezzenga, R. (2024). Hybrid amyloid-chitin nanofibrils for magnetic and catalytic aerogels. ACS Nano, 18(8), 6690-6701. https://doi.org/10.1021/acsnano.4c00883
Formation of electron traps in semiconducting polymers via a slow triple-encounter between trap precursor particles
Sedghi, M., Vael, C., Hu, W. H., Bauer, M., Padula, D., Landi, A., … Hany, R. (2024). Formation of electron traps in semiconducting polymers via a slow triple-encounter between trap precursor particles. Science and Technology of Advanced Materials, 25(1), 2312148 (9 pp.). https://doi.org/10.1080/14686996.2024.2312148
Simulating cumulus clouds based on self-organized criticality
Cheraghalizadeh, J., Luković, M., & Najafi, M. N. (2024). Simulating cumulus clouds based on self-organized criticality. Physica A: Statistical Mechanics and its Applications, 636, 129553 (10 pp.). https://doi.org/10.1016/j.physa.2024.129553
Dieter Eckstein's bibliography and legacy of connection to wood biology and tree-ring science
Čufar, K., Liang, E., Smith, K. T., Ważny, T., Wrobel, S., Cherubini, P., … Sass-Klaassen, U. (2024). Dieter Eckstein's bibliography and legacy of connection to wood biology and tree-ring science. Dendrochronologia, 83, 126165. https://doi.org/10.1016/j.dendro.2024.126165
Effect of indented growth rings on spruce wood mechanical properties and subsequent violin dynamics
Viala, R., Cabaret, J., Sedighi-Gilani, M., Placet, V., & Cogan, S. (2024). Effect of indented growth rings on spruce wood mechanical properties and subsequent violin dynamics. Holzforschung. https://doi.org/10.1515/hf-2023-0090
Gold recovery from E-waste by food-waste amyloid aerogels
Peydayesh, M., Boschi, E., Donat, F., & Mezzenga, R. (2024). Gold recovery from E-waste by food-waste amyloid aerogels. Advanced Materials. https://doi.org/10.1002/adma.202310642
Convolutional neural networks for quality and species sorting of roundwood with image and numerical data
Achatz, J., Lukovic, M., Hilt, S., Lädrach, T., & Schubert, M. (2024). Convolutional neural networks for quality and species sorting of roundwood with image and numerical data. Expert Systems with Applications, 246, 123117 (17 pp.). https://doi.org/10.1016/j.eswa.2023.123117
Polysiloxane inks for multimaterial 3d printing of high-permittivity dielectric elastomers
Danner, P. M., Pleij, T., Siqueira, G., Bayles, A. V., Venkatesan, T. R., Vermant, J., & Opris, D. M. (2023). Polysiloxane inks for multimaterial 3d printing of high-permittivity dielectric elastomers. Advanced Functional Materials. https://doi.org/10.1002/adfm.202313167
BlueWood - Oberflächenbehandlung von primär verblautem Käferholz
Künniger, T., Heer, D., Heeb, M., Elsener, R., & Huch, A. (2023). BlueWood - Oberflächenbehandlung von primär verblautem Käferholz. (Report No.: 2020.03). Empa; Bundesamt für Umwelt BAFU.
High-performance timber-concrete-composites with polymer concrete and beech wood
Stucki, S., Kelch, S., Mamie, T., Burckhardt, U., Grönquist, P., Elsener, R., … Burgert, I. (2024). High-performance timber-concrete-composites with polymer concrete and beech wood. Construction and Building Materials, 411, 134069 (11 pp.). https://doi.org/10.1016/j.conbuildmat.2023.134069
Chitin-based pulps: Structure-property relationships and environmental sustainability
Greca, L. G., Azpiazu, A., Reyes, G., Rojas, O. J., Tardy, B. L., & Lizundia, E. (2024). Chitin-based pulps: Structure-property relationships and environmental sustainability. Carbohydrate Polymers, 325, 121561 (12 pp.). https://doi.org/10.1016/j.carbpol.2023.121561
Anisotropic, strong, and thermally insulating 3D‐printed nanocellulose–PNIPAAM aerogels
Nagel, Y., Sivaraman, D., Neels, A., Zimmermann, T., Zhao, S., Siqueira, G., & Nyström, G. (2023). Anisotropic, strong, and thermally insulating 3D‐printed nanocellulose–PNIPAAM aerogels. Small Structures, 4(12), 2300073 (9 pp.). https://doi.org/10.1002/sstr.202300073
Maximierung der Verwendung von Holz im Bauwesen als Beitrag zu Netto-Null – das Forschungsprojekt «MainWood»
Ghazoul, J., Bugmann, H., Burgert, I., Hellweg, S., Schweier, J., Weinand, Y., & Rigling, A. (2023). Maximierung der Verwendung von Holz im Bauwesen als Beitrag zu Netto-Null – das Forschungsprojekt «MainWood». Schweizerische Zeitschrift für Forstwesen, 174(6), 40-43. https://doi.org/10.3188/szf.2023.0384
Nanocellulose aerogels as 3D amyloid templates
Sinha, A., Kummer, N., Wu, T., De France, K. J., Pinotsi, D., Thoma, J. L., … Nyström, G. (2023). Nanocellulose aerogels as 3D amyloid templates. Nanoscale, 15, 17785-17792. https://doi.org/10.1039/d3nr02109b
 

Pages