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ABSTRACT 

Human teeth are anisotropic composites. Dentin as the core material of the tooth consists of nanometer-sized calcium 

phosphate crystallites embedded in collagen fiber networks. It shows its anisotropy on the micrometer scale by its well-

oriented microtubules. The detailed three-dimensional nanostructure of the hard tissues namely dentin and enamel, 

however, is not understood, although numerous studies on the anisotropic mechanical properties have been performed 

and evaluated to explain the tooth function including the enamel-dentin junction acting as effective crack barrier. Small 

angle X-ray scattering (SAXS) with a spatial resolution in the 10 µm range allows determining the size and orientation of 

the constituents on the nanometer scale with reasonable precision. So far, only some dental materials, i.e. the fiber 

reinforced posts exhibit anisotropic properties related to the micrometer-size glass fibers. Dental fillings, composed of 

nanostructures oriented similar to the natural hard tissues of teeth, however, do not exist at all. The current X-ray-based 

investigations of extracted human teeth provide evidence for oriented micro- and nanostructures in dentin and enamel. 

These fundamental quantitative findings result in profound knowledge to develop biologically inspired dental fillings 

with superior resistance to thermal and mechanical shocks. 

Keywords: human tooth, dentin, enamel, small angle X-ray scattering, micro computed tomography, microtubules, 

anisotropy, microstructure, nanometer scale, synchrotron radiation 

 

1. INTRODUCTION 

Enamel and dentin of human teeth belong to the anisotropic biological materials. Enamel is known as highly mineralized 

hard and brittle substance [1]. On the micrometer scale, oriented enamel rods or prisms can be observed, which are the 

result of polarized columnar cells termed ameloblasts. These enamel rods mainly consist of densely packed calcium 

phosphates. It is also found within the spaces between the crystallites. The only difference between the calcium 

phosphate in and between the rods is their orientation on the nanometer scale.  

Dentin can be regarded as a natural composite consisting of carbonate-rich calcium phosphate nanometer-sized 

crystallites embedded in collagen fiber networks. As the result of the different composition and density X-ray-based 

imaging easily permits the discrimination between the two hard tissues dentin and enamel. 

While the principal anatomy of the tooth has been understood since decades, the detailed three-dimensional micro- and 

nanostructure especially at the dentin-enamel junction is still matter of research (see, e.g. [1-3]). Electron microscopy 

micrographs provide impressive qualitative insights into the crystallite morphology, but the quantitative evaluation is 

time-consuming and complex as well as distorted by the sectioning artifacts. Nevertheless, there are several successful 

attempts to uncover the size, orientation, and density of the apatite crystallites as well as the organization of the collagen 

fibrils in the three-dimensional space.  
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The studies include synchrotron radiation-based small angle X-ray scattering (SAXS) with a spatial resolution down to 

200 µm [3]. Although these SAXS studies already indicate local variations in the ordered phases within the dentin, the 

restricted spatial resolution has not allowed any conclusion about the enamel-dentin junction that is of paramount 

importance for the mechanical properties of the entire teeth [1]. The present investigation evaluates how far scanning 

SAXS with a spatial resolution in the range of 10 µm [4] can contribute to an improved understanding of the nano-

architecture of dentin and enamel in particular near the dentin-enamel junction, where the ordered dentinal tubules are 

supposed to end. This morphological transition adapts the mechanical properties between the enamel of high strength 

and brittleness and the supportive compliant dentin [1]. So far, dental fillings used to repair (caries-induced) defects do 

not exhibit any similar micro- or nano-architecture neither anisotropic mechanical properties as observed for the two 

biological materials. In this context, the current study on the three-dimensional micro- and nano-architecture of the 

underlying structural elements should enable the realization of bio-mimetic dental fillings with superior resistance to 

thermal and, more important, to mechanical shocks. 

2. MATERIALS AND METHODS 

2.1 Tooth selection and preparation for X-ray imaging 

An extracted non-restored molar tooth of the fourth quadrant without any visible damage was selected for the 

experiments. The human tooth was caries-free as it did not show any clinical sign of enamel caries. For the 

measurements the extracted tooth was placed into an Eppendorf tube to avoid dehydration. 

2.2 Conventional micro computed tomography of teeth 

Micro computed tomography (µCT) measurements of the complete tooth in the liquid-filled Eppendorf tube were 

performed with the system 1174™ (SkyScan, Kontich, Belgium) [5, 6]. The fixed specimen rotation stage allows for 

positioning in one direction perpendicular to the X-ray beam. The X-ray absorption of the tooth required the highest 

possible accelerating voltage of 50 kV and the application of a 0.5 mm-thick aluminum filter. The focus between the X-

ray scintillator and the one megapixel CCD detector was adjusted to obtain an isotropic pixel size of 28.8 µm. 900 

projections from 0 to 360° in steps of 0.4° were recorded using a beam current of 800 µA. The reconstruction was 

performed with a modified Feldkamp algorithm using SkyScan Nrecon™ software. 

 

Fig. 1. Preparation of teeth slices for the high-resolution measurements parallel and perpendicular to the tooth axis. The 

images were generated from the µCT-data using the software VG Studio Max 1.2.1 (Volume Graphics, Heidelberg, 

Germany). 
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2.3 Specimen preparation 

Based on the µCT results of the complete tooth, Figure 1 schematically shows the harvesting of slices with thicknesses 

of about 200 µm and 300 µm, respectively. The slices were obtained parallel and perpendicular to the tooth axis. A saw 

(Exact Apparatebau GmbH, Norderstedt, Germany) equipped with a 0.2 mm cutting diamond band served for the slice 

preparation. 

2.4 Synchrotron radiation-based micro computed tomography 

The SRµCT-measurements were performed at two different beamlines: W 2 (HASYLAB at DESY, Hamburg, Germany) 

and TOMCAT (SLS at PSI, Villigen, Switzerland). 

The beamline W 2 with its standard setup for absorption contrast tomography [7], operated by the GKSS Research 

Center, served for the simultaneous visualization of a series of teeth slices combined in one container filled with 

phosphate buffer saline (PBS). The photon energy was set to 45 keV. The present study included two datasets at different 

heights, which were combined after reconstruction with pixel resolution. The rotation axis was chosen asymmetrical to 

the incoming X-ray beam to increase the spatial resolution [8]. Therefore, the complementary projections were combined 

before reconstruction. The number of projections corresponded to 1441 acquired by rotating the sample in steps of 0.25° 

from 0 to 360°. The filtered back-projection algorithm served for the slice-wise reconstruction [9]. In order to improve 

the density resolution at the restricted number of projections, the data, recorded with a pixel size of 4.6 µm, were binned 

by a factor of two before reconstruction [10]. The spatial resolution determined from the 10% value of the modulated 

transfer function of a highly X-ray absorbing edge corresponded to 8.8 µm [11]. 

The SRμCT-measurements at TOMCAT [12] were carried out in absorption contrast mode using a photon energy of 

15 keV with a band width of 2% to 3% and an exposure time of 170 ms per projection. The absorption contrast contains 

edge enhancement as well. For these experiments a rod was cut out of the tooth slice so that the specimen presented with 

a maximum diameter of 0.7 mm. This setting permitted high-resolution measurements with a pixel size of 0.37 µm. The 

specimen held in air was rotated in steps of 0.12° between 0° and 180° to record the projections. Reconstructed data were 

obtained by means of the filtered back-projection available at the beamline, where 9 height steps were acquired to follow 

a reasonable volume within dentin and enamel as well as of the dentin-enamel junction. 

2.5 Small angle X-ray scattering 

Small angle X-ray scattering (SAXS) is a powerful method that profits from the elastic scattering of X-rays at features 

within the nanometer range [13]. SAXS is usually restricted to scattering angles well below 10°. SAXS data contain 

quantitative information averaged on the illuminated area. 

As schematically shown in Figure 2, the X-ray beam with the selected photon energy is scattered by the nanometer-sized 

features of the tooth slice. The interaction of the keV-photons with matter, however, is rather weak, so that most of the 

beam simply penetrates the tooth slice. In order to detect the weak scattered intensities, a beam stop is usually 

incorporated (see Figure 2). 

The SAXS measurements were performed at the cSAXS beamline of the Swiss Light Source (Paul Scherrer Institut, 

Villigen, Switzerland). A monochromatic X-ray beam with a photon energy of 18.58 keV was focused to a spot of about 

20 μm × 5 μm for the raster scan measurements. Two modules of a PILATUS detector [14] with about 190'000 pixels in 

total have been used for the detection. To speed up the data acquisition, the tooth slice was moving at constant speed 

along a line of the 2D raster pattern, while the detector was continuously recording data. The detector was operated with 

20 ms exposure time and 8 ms readout time. This selection corresponds to a frame rate of 36 Hz. 

In order to determine information on the abundance of nanostructures of interest within the illuminated point of the raster 

scan, the recorded intensity was averaged within the related ring around the through beam. The orientation and the 

anisotropy of these nanostructures follow the angular intensity distribution along the ring [4]. One finally obtains an 

intensity map with the color-coded orientation for the selected nanometer range. 
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Fig. 2. The X-ray beam, about 5 µm × 20 µm wide, perpendicularly hits the tooth slice that can be moved along x and y 

directions. For each (x,y)-position a SAXS pattern is recorded. Finally a ring of each SAXS pattern around the direct 

beam is analyzed to determine the size and orientation of the nanometer-sized features of dentin and enamel. 

3. RESULTS 

3.1 Micro computed tomography to characterize the tooth slices 

Synchrotron radiation-based micro computed tomography (SRµCT) served for both the determination of the outer shape 

of the entire slice, which includes the measurement of the slice thickness, and the internal microstructure of the tooth 

slice.  

 

Fig. 3. The high-resolution tomography experiments of the tooth slice enable the segmentation of two homogeneous 

components (enamel and dentin) and the interface (as the result of the partial volume effect). In addition, the image also 

shows a crack and an abrasion on the enamel. 

One can perfectly discriminate between enamel and dentin because of the different X-ray absorption (see Figure 3). 

Dentin and enamel, however, appear as homogeneous materials. Hence, the value of the SRµCT remains in the 

measurement of the slice thickness and parallelism and, more important, in the local orientation of the dental-enamel 

junction. If the dental-enamel junction is parallel to the beam direction for the SAXS measurements, one can draw 
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conclusions about this interface. If the interface, however, shows an angle of 45° for instance, the SAXS-measurements 

yields a mean value of both enamel and dentin. 

3.2 Microstructure of dentin: Visualization of tubules 

For the high-resolution tomography, a rod was cut from one 500 µm thick tooth slice. This rod fits well into a cylinder 

less than 0.7 mm in diameter and, therefore, allows for sub-micrometer resolution tomography. Figure 3 represents a 

series of nine slices perpendicular to the rod axis, which are 74 µm apart from each other. The enamel given in light gray 

in the first two slices exhibits a stronger X-ray absorption than the dentin. Thus, enamel and dentin can be easily 

segmented. In these high-resolution edge-enhanced images the enamel does not exhibit a homogeneous X-ray absorption 

as in the X-ray imaging presented above and well known from conventional X-ray imaging techniques but certain 

variations in composition that includes very few tubular microstructures. 

 

Fig. 4. The series of slices shows the density distribution of the tubules, which becomes smaller and smaller towards the 

dentin-enamel junction. The distance between the slices corresponds to 74 µm each. 
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Within the dentin structure thousands of tubules are visible. The density of these tubules, however, varies and depends 

on the distance to the dentin-enamel junction. In general, the tubule density decreases towards the interface to the 

enamel, as indicated in Figures 4 and 5. 

Figure 5 shows the density distribution of the tubules, which are oriented in a parallel manner. Here, the distance 

between the slices also corresponds to 74 µm. It is also recognized in Figure 5 that although the tubules are usually 

parallel, their orientation can change to become perpendicular to the dentin-enamel junction. 

The tubules do not appear as simple cavities, which would become visible as very thin black cylinders. Almost each 

tubule contains a bright halo with a thickness of one or two micrometers. 

 

Fig. 5. The series of selected slices parallel to the tooth axis demonstrates the parallel orientation of the tubules within the 

dentin. Their density is reduced towards the dentin-enamel junction. The crack in the enamel is attributed to a 

preparation artifact. 
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3.3 Nanostructure of enamel and dentin 

The SAXS measurements prove the preferential orientation of the nanostructures present in dentin and enamel. Figure 6 

shows the cut perpendicular to the tooth axis. The nanostructures in the dentin are hardly ordered as indicated by the gray 

color. Only in the 20 nm range the nanostructures are oriented towards the growth direction. The light color, however, 

indicates that the number of scatters is rather weak. For the 20 nm range, however, one can differentiate between two 

different kinds of dentin. The inner part of the tooth contains more scatter centers, which are less ordered, whereas the 

part towards the enamel exhibit better ordered nanostructures of rather small density. 

 

Fig. 6. The representation of the SAXS measurement demonstrates that nanostructures within dentin and enamel are often 

oriented from the center of the tooth towards the periphery. The images are obtained for the different length scales: 14 

to 24 nm (top, left), 24 to 39 nm, 40 to 52 nm, 53 to 71 nm, 73 to 173 nm and 185 to 231 nm (bottom, right). The 

colored circular area denotes the orientation of the scattered intensity. 
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The enamel contains much more nanometer-sized features than the dentin in the range between 10 and 200 nm. They are 

clearly oriented in the central part, best seen within the 200 nm range. Although, there exist close similarities between 

the different nanometer scales, only the larger nanostructures show prominent features that are even crack-like traveling 

through the whole enamel structure of the tooth. The turquoise colored part on the left side of the images belongs to the 

characteristics of this particular slice. This part is significantly thinner, because a part of the enamel was broken off 

during the preparation of the slice. 

 

Fig. 7. The representation of the SAXS data parallel to the tooth axis reveals a preferential orientation of features in the 

range between 10 and 200 nm for both enamel and dentin. The orientation, however, is significantly different for both 

hard tissue components. The images are obtained for the different length scales: 14 to 24 nm (top, left), 24 to 39 nm, 40 

to 52 nm, 53 to 71 nm, 73 to 173 nm and 185 to 231 nm (bottom, right). 
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The SAXS data of Figure 7 are obtained from a slice parallel to the tooth axis with a thickness of (270 ± 10) µm. In 

comparison to Figure 6 it demonstrates that the nanostructures of the hard tissues of the tooth are mainly oriented from 

top to bottom. 

The SAXS experiments allow discriminating between enamel and dentin, since the nanostructures of the same 

frequencies are oriented in different directions. Nanostructures of the enamel that are below 24 nm do not exhibit the 

preferential orientation as observed among the larger ones. The color-coded images further uncover that the 

nanostructures within certain limits abruptly change their orientation at the dentin-enamel junction. Analyzing the 

SRµCT data of the tooth slices, it is concluded that the transparent line on the left side of the tooth resulted from the 

interface between of dentin and enamel with rather irregular nanostructures. The abrasion on the left part of the tooth 

does not affect the orientation of the adjacent nanostructures. 

4. DISCUSSION AND CONCLUSIONS 

Conventional X-ray imaging techniques allow extracting the tooth geometry and the intensity-based segmentation [15] of 

dentin and enamel. The spatial and density resolution, however, are insufficient to uncover the micro- and the 

nanostructure of teeth tissues. The quantitative determination of the composition is especially demanding [16], since the 

dentin belongs to biological tissues with related diversification and property variations. Tomography with true 

micrometer resolution permits the visualization of the dentin tubules [17, 18]. Contrary to electron microscopy the 

tomographic imaging allows visualizing the tubules in the three-dimensional space and not only at the surface. Hence, 

the density and orientation of the tubules are quantitatively accessible. The bright halo of the tubules can be attributed to 

the enhanced density around each tubule and/or to the edge enhancement as the result of the coherent X-ray beam. In the 

slices of Figure 5 some cracks within the enamel are recognized. Such cracks are probably the result of the imperfect 

preparation procedure. 

The current investigations reveal strong anisotropic morphologies of dentin and enamel on the micro- and nanometer 

scale. The orientation of the tubules follows the growth direction that corresponds to the main direction of mechanical 

loading. The SAXS data, which uncover the nano-architecture of the hard tissues, also show preferential orientation 

towards the growth directions. Interestingly, the orientations of the nanostructures within the dentin and the enamel are 

altered. Within certain regions, the nanostructures are almost perpendicular to each other at the dentin-enamel junction.  

This fundamental knowledge should be applied for the development of biologically inspired dental fillings, i.e. to realize 

man-made materials with a micro- and nano-architecture similar to enamel and dentin. If caries has significantly 

damaged the enamel and dentin of the tooth, the dentist removes the damaged part and re-builds it by means of 

conventional isotropic dental composite materials that do not resemble the anisotropic structure of human teeth. The use 

of such a material that tends to shrink is also the reason, why the dentist usually removes more enamel than really 

necessary. Overhangs, as represented in Figure 8, are generally avoided to prevent the potential cracking. Therefore, 

improved fillings are highly desirable to achieve better results by less invasive treatment modalities. 

The challenge for the realization of the biologically inspired fillings lies in the arrangement of the nanometer-sized 

building blocks. At least two different layers, namely for the dentin and for the enamel have to be foreseen in order to 

achieve the different preferential orientation of the nanostructures. 

One could imagine various approaches to imitate the hard tissues of the human teeth. For example, crystalline growth 

processes, which take place at non-equilibrium conditions with gradients in temperature or concentration, give rise to 

nanostructures with strong anisotropies [19]. Unfortunately such processes are difficult to be controlled and, hence, 

impractical for patient treatment. Furthermore, one could apply fiber composites as already successfully incorporated 

into dental posts. The appropriate orientation of the fibers, however, is demanding. Building blocks of charged or dipolar 

units such as dedicated carbon nano-tubes would result in parallel arrangements of the nanostructures. The dashed curves 

in Figure 8 represent the potential arrangements of charged nano-tubes. Because of the charge, the nano-tubes exhibit a 

repulsive interaction that leads to almost parallel equidistant alignments [20]. Such dental fillings should have superior 

resistance to thermal and mechanical shocks as known from the hardest substance in the human body – the enamel. 
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Fig. 8. The biomimetic and biologically inspired dental fillings should contain nanostructures such as charged carbon nano-

tubes that become aligned because of the repulsive interactions. Their size and orientation should be analogue to the 

undamaged dentin and enamel. 
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