
DEVELOPING HDF5 FOR THE SYNCHROTRON COMMUNITY

N. Rees, Diamond Light Source, Oxfordshire, UK

H. Billich, PSI, Villigen, Switzerland

A. Götz, ESRF, Grenoble, France

Q. Koziol & E. Pourmal, The HDF Group, Champaign, IL, USA

M. Rissi, Dectris AG, Baden, Switzerland

E. Wintersberger DESY, Hamburg, Germany

Abstract

HDF5[1] and NeXus[2] (which normally uses HDF5 as

its underlying format) have been widely touted as a

standard for storing Photon and Neutron data. They offer

many advantages to other common formats and are

widely used at many facilities. However, it has been

found that the existing implementations of these standards

have limited the performance of some recent detector

systems. This paper describes how the synchrotron light

source community has worked closely with The HDF

Group to drive changes to the HDF5 software to make it

more suitable for their environment. This includes

developments managed by a detector manufacturer

(Dectris - for direct chunk writes) as well as synchrotrons

(DESY, ESRF and Diamond - for pluggable filters, Single

Writer/Multiple Reader and Virtual Data Sets).

INTRODUCTION

The original initiative for this work came from a

workshop held at Paul Scherrer Institute (PSI) in late May

2012. This was jointly organised by PSI and Dectris and

brought together representatives from the synchrotron

community and employees of The HDF Group. A number

of issues were identified at that workshop, including:

1. The single threaded nature of the HDF5 library

made it difficult to benefit from the multicore

architecture of modern CPU’s.
2. Compression was an important mechanism to

improve data throughput in many synchrotron use

cases, but including any form of compression

limited the throughput of the library and also could

not be used when writing in parallel with the

Parallel HDF5 library (pHDF5).

3. Use of a hierarchical format like HDF5 led to the

need to store many detector frames in one file.

However, this increases the latency of any

processing because HDF5 files could not be open

for read and write simultaneously.

Since this meeting the authors have collaborated to

fund a number HDF5 developments that have eliminated

many of these problems for practical synchrotron use

cases.

DIRECT CHUNK WRITES

This development was sponsored by Dectris and PSI

and introduced a new function H5DOwrite_chunk in

the high-level HDF5 library which bypasses the data

gathering and scattering, data conversion, filter pipeline,

and chunk cache and writes the data chunk to the file

directly (see Fig. 1). This allows the user program to

compress the data outside the library – potentially using

parallel algorithms or hardware accelerators. It also

avoids a number of data copies, which limits any dataflow

through the filter pipeline to ~500 MB/sec on typical

processors.

Storage

Data

Gathering

Data

Conversion

Buffer

Data

Scattering

Chunk Cache

Filter Pipeline

A B

DC

HDF5 Library

H5DOwrite_chunk

H5Dwrite

B

DC

A In memory data

Figure 1: HDF5 data writing, showing the elements that

H5DOwrite_chunk bypasses.

The feature was released in HDF5 version 1.8.11 in May

2013. The implementation and testing required about 5

months of work and, while the function did not present

any technical difficulties, fitting it into the HDF5 library

required some rethinking of the HDF5 source code

architecture. The latest versions of the library are set for

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF063

Data Management, Analytics & Visualisation

ISBN 978-3-95450-148-9

845 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

expansion with other optimized functions if the need

arises.

DYNAMICALLY LOADED FILTERS

This development was sponsored by DESY. As

mentioned above, HDF5 implements data compression by

means of a filter pipeline. The library comes with several

predefined filters including GZIP and SZIP compression

algorithms [3] but SZIP, for example, has license terms

that may restrict data distribution. Those algorithms are

also very general and so may not achieve optimal

performance in terms of speed and/or compression ratio

for a specific experimental application. Also prior to this

development custom compression methods had to be

incorporated into the main HDF5 library at link time and

this further limited the way filters could be used.

With the new feature, the filters can be dynamically

loaded at run-time which allows application domains to

develop specialist filters suited to their requirements

without the need for integrating them within the HDF5

code base or passing support to The HDF Group. When a

filter DLL or a shared library is available on the system,

HDF5 tools and user applications can use an off-the-shelf

HDF5 library to read and modify data transparently to a

user’s application. Each filter has a unique identifier and

filter developers are encouraged to register their filters

with The HDF Group to avoid identifier clashes and

allow a list of available filters to be published (see

https://www.hdfgroup.org/services/contributions.html).

Writing, testing and distributing custom HDF5 filters is

now a community effort with The HDF Group just

providing guidance. The HDF Group, DESY and Dectris

are working on a repository of the dynamically loaded

filters (https://svn.hdfgroup.uiuc.edu/hdf5_plugins/), so

users can download code and binaries for filters they

need.

SINGLE WRITER/MULTIPLE READER

With the transition from less structured data to a

structured data format that is related to the goals of an

experiment comes the requirement to store all data for an

experimental scan (or even experiment) in a single file.

This groups like data together and makes data storage

more efficient at high frame rates – where in the past each

frame and its metadata had been stored in separate files.

However, since HDF5 did not allow simultaneous reading

and writing by separate threads or processes, this either

meant that any processing of the file had to wait until the

scan completed, which in extreme cases can be several

hours, or that data servers had to be written to handle all

the data reading and writing, creating a data bottleneck.

Single Writer/Multiple Reader (SWMR) allows a single

process to update datasets in an HDF5 file whilst multiple

other processes are reading data from the same datasets.

To solve the difficulties involved with allowing

concurrent access to write and read processes, HDF5

developers used an approach that is lock-free and that

does not require any communication between processes.

All communications are done through the HDF5 file

itself.

In previous versions of HDF5 the file organisation on

disk was only guaranteed to be consistent if it wasn’t
open for writing because data storage metadata (that

describes how the data is laid out on disk) was kept in the

writers cache until the file was closed. The approach

taken for the SWMR development was to modify the

writer's metadata cache and file data structure code to

ensure that metadata that is referred to by another

metadata object is always flushed from the cache first.

This ensures that a reader will never attempt to resolve an

invalid offset and has the secondary benefit that the state

of the file on disk is always consistent and cannot be

corrupted by an application crash. The parent‐child

relationship between the metadata objects is called a flush

dependency.

Figure 2: Representative flush dependencies between

metadata cache objects.

An example of the flush dependency algorithm is

shown in Fig. 2 where entry A is the parent of C, B is the

parent of D, and C is the parent of both E and F. Dirty

entries are shaded (A‐E), and clean entries are not shaded

(F). With this configuration, A could not be written to the

file until C is clean, and C could not be written to the file

until both E and F are clean. Likewise, B could not be

written to the file until D was clean. So, with this

configuration, when the metadata cache is attempting to

flush dirty entries to the file (perhaps when flushing all

the metadata for the file), either entries D and E could be

written to the file first (making them clean), then entries B

and C, and finally entry A. If C was written before B, A

would also be able to be flushed before B.

This algorithm is based on the assumption that the

HDF5 file resides on a file system compliant with POSIX

I/O semantics. There are two major features of POSIX

I/O semantics that are critical for SWMR use: POSIX I/O writes must be performed in a

sequentially consistent manner. Writes to the file must appear as atomic

operations to any readers that access the file

during the write operation.

These semantics apply to any processes that access the

file from any location. The caveat is that some file-

systems (notably NFSv3) do not abide by these semantics

and they cannot be used since reading processes do not

see changes to the data in the same order as it is written.

The feature presented significant technical difficulties

and required a lot of rework of the HDF5 library

architecture. It also triggered changes to the HDF5 File

Format introducing new chunk indexing structures with

enabled checksums on the metadata items.

WEPGF063 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

846C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management, Analytics & Visualisation

The feature leveraged the work done by The HDF

Group developers for another commercial customer who

funded the effort for several years.

The completion of the SWMR development for

“append-data” only writers [4] was sponsored by

Diamond Light Source, ESRF and Dectris. The

development was coordinated, but each organisation

contributed to a different work package of the

development and so funding was kept separate.

The development comprised about twelve months of

the effort and was delivered as a specialized version of

the HDF5 library to DLS, ESRF and Dectris. The HDF

Group has been working on merging the feature with the

main stream of HDF5 and delivering it in the HDF5

release version 1.10.0.

VIRTUAL DATA SETS

The virtual dataset concept has the most interesting

history in that it was developed last and has evolved the

most from the original ideas in the PSI workshop in 2012.

The original driver was storage of data from high-speed

detectors. Two approaches were considered to maximise

the storage throughput – one was compression (for

example, the Pilatus detector used the imgCIF packed

compression) and the other was writing data in parallel.

The problem was that pHDF5 was not able to write

compressed data, and so a proposal called “Parallel
Compressed Writer” was generated. As the name implied,

one of the initial design ideas was to allow compression

in pHDF5, but the complexities of this was a problem and

it was also discovered that the performance per process of

pHDF5 was not as good as single stream HDF5 because

of the MPI overhead on the nodes used for writing.

After some discussion another approach was proposed

which extended the concept of the HDF5 dataset soft-link

to allow for a dataset to be comprised of a union of

datasets from a number of other files. These files could

then be written independently and in parallel and since the

writers wouldn’t use pHDF5 they could also be

compressed. When The HDF Group saw this proposal

they connected it with use cases from other domains far

beyond just high-speed detectors. Consequently, the idea

was generalised so that the parent dataset could be

composed of an arbitrary mapping of child datasets, and

the name of “Virtual Dataset” was coined [5].

Figure 3 shows a simple mapping of source datasets to

a virtual dataset, but much more complex mappings are

possible. The mappings can be any n-dimensional

rectangle and gaps can be filled with user specified fill

values. These gaps can be both gaps between the maps or,

in a data acquisition application, gaps representing data

that hasn’t yet been written to the underlying datasets.

Hence virtual datasets can be used for sparse data, or for

combining data from different sources to be used by an

application that wasn’t considered when the original files
were written. Virtual dataset capabilities are particularly

useful in an environment where multiple data sources

need to update an HDF5 dataset simultaneously. The

child files can all be written by different SWMR

processes and readers can still open and read the parent

dataset without conflict, and periodically poll the dataset

metadata to determine if additional data has appeared.

Figure 3: Simple mapping of source datasets to a VDS.

The feature implementation required adding a new

storage layout to HDF5 and triggered improvements to

the HDF5 library code. The total implementation effort

took seven months of the developers’ time. Another two
months will be spent on merging VDS with the HDF5

mainstream library and preparing the feature for the

HDF5 1.10.0 release.

The Virtual Data Set project was jointly funded by

DESY, Diamond and the Percival detector project. Since

the project could not be broken down into appropriate

sized work packages, Diamond Light Source coordinated

the work and all three parties contributed equal amounts.

CONCLUSIONS

The main point of this paper is to demonstrate how

some of the major synchrotron light sources have

collaborated to develop our common software for the

benefit not just of the stakeholders, but for the entire

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF063

Data Management, Analytics & Visualisation

ISBN 978-3-95450-148-9

847 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

community. These developments were different to many

of the collaborative software developments we have

undertaken in the past (e.g. EPICS and TANGO) in that

all the development was done commercially rather than

in-house. This has created challenges because money

rather than manpower had to be committed and this has

required a strong motivation and champion for the

development. However, it has also proved to be

productive because the developments have been delivered

largely to time and to the agreed budget.

The largest time delay has come for the latter two

projects because they have involved a change in the

underlying HDF5 data file format. This has meant that

they cannot be released as an HDF5 point release, but

have had to be delayed until the next major HDF5 release

(HDF5 1.10). This has slowed the uptake of the

developments and we look forward to the release of

HDF5 1.10 late in the first quarter of 2016.

REFERENCES

[1] The HDF Group. Hierarchical Data Format, version

5, 1997-2015. http://www.hdfgroup.org/HDF5/

[2] NeXus. A coomon data format for neutrons, x-ray

and muon sources. http://www.nexusformat.org

[3] The HDF Group. “Using compression in HDF5”,
https://www.hdfgroup.org/HDF5/faq/compression.ht

ml

[4] The HDF Group. “HDF5 New Features”,
https://www.hdfgroup.org/HDF5/docNewFeatures/

[5] The HDF Group. “HDF5 Virtual Dataset”,
https://confluence.hdfgroup.org/display/UF/HDF5+V

irtual+Dataset

WEPGF063 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

848C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management, Analytics & Visualisation

