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ABSTRACT
Background: Treatment planning for intensity modulated proton therapy (IMPT) can be significantly
improved by reducing the time for plan calculation, facilitating efficient sampling of the large solution
space characteristic of IMPT treatments. Additionally, fast plan generation is a key for online adaptive
treatments, where the adapted plan needs to be ideally available in a few seconds. However, plan
generation is a computationally demanding task and, although dose restoration methods for adaptive
therapy have been proposed, computation times remain problematic.
Material and methods: IMPT plan generation times were reduced by the development of dedicated
graphical processing unit (GPU) kernels for our in-house, clinically validated, dose and optimization
algorithms. The kernels were implemented into a coherent system, which performed all steps required
for a complete treatment plan generation.
Results: Using a single GPU, our fast implementation was able to generate a complete new treatment
plan in 5–10 sec for typical IMPT cases, and in under 25 sec for plans to very large volumes such as for
cranio-spinal axis irradiations. Although these times did not include the manual input of optimization
parameters or a final clinical dose calculation, they included all required computational steps, includ-
ing reading of CT and beam data. In addition, no compromise was made on plan quality. Target
coverage and homogeneity for four patient plans improved (by up to 6%) or remained the same
(changes <1%). No worsening of dose-volume parameters of the relevant organs at risk by more than
0.5% was observed.
Conclusions: Fast plan generation with a clinically validated dose calculation and optimizer is a prom-
ising approach for daily adaptive proton therapy, as well as for automated or highly inter-
active planning.
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Introduction

Fast generation of treatment plans for proton therapy is
important for adapting to major anatomical changes. Such
changes are one of the largest source of uncertainty [1] and
since manual adaption is labor intensive, much recent
research has focused on developing methods for online
adaptive proton therapy [2–5]. Ideally, such adaptions should
be performed daily with the complete adaption process
being performed within 5–10min. To achieve this, user
inputs must be limited, anticipated or their choice auto-
mated. In this case, time for adaption will be dominated by
plan computation, where calculational performance is of
upmost importance. Additionally, fast plan computations will
improve the usability of a treatment planning system (TPS),
allowing for a more trial and error based planning approach
by facilitating efficient searches through the huge solution
space of intensity modulated proton therapy (IMPT).

Graphical processing units (GPUs) have been widely
deployed for speeding up computationally demanding tasks
in medical physics. Different groups have applied them to
analytical [6–8] and Monte Carlo (MC) dose calculations
[2,9–11], as well as to plan optimization [2,9,12] for proton
therapy. The fastest reported values for analytical dose cal-
culations are in the sub-second range. Da Silva et al.
achieved analytical dose calculations with a double Gaussian
kernel in 0.22 sec [6], whereas reported values for GPU sup-
ported MC simulations are in the minute range. Ma et al.
report MC dose deposition calculations in 1–15min depend-
ing on the size of the patient case [9] and Botas et al. in
2–7minutes for head and neck cases of varying sizes [2]. For
optimization of pencil beam fluences, Ma et al. report add-
itional optimization times of between a half and seven
minutes [9] and Botas et al. between twelve seconds and
three minutes [2]. However, the whole computational treat-
ment plan generation does not only consist of dose
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calculation and optimization. Different preparatory steps like
reading the input data or calculation of Bragg peak posi-
tions also contribute to the computational cost of plan gen-
eration. Therefore, using GPUs coherently for the whole
process enables further improvements in the efficiency of
IMPT planning.

Alternatively, adaptive planning can instead aim to restore
pencil beam positions in the daily patient geometry [13], add
pencil beams to cover the target [3] and/or re-optimize pen-
cil beam fluences to restore the nominal dose [4]. Such
approaches have the benefit that the adapted is similar to
the nominal plan, facilitating clinical validation of the
adapted plan. However, dose restoration does not necessarily
allow for the best dose distribution on the daily patient
geometry, since the new geometry may allow for better tar-
get coverage and/or organ at risk (OAR) sparing than in the
nominal plan. In addition, calculation times are on the upper
border of those required for practical daily adaptive pro-
ton therapy.

This study reports on an ultra-fast method for treatment
plan generation without compromises as compared to our
clinically and well-established treatment planning process.
Treatment plan generation times for four example patients
are reported, and the quality of the calculated doses eval-
uated. The benefits of the GPU implementation for online
adaptive proton therapy, as well as advantages and draw-
backs to other reported methods are discussed. Finally, add-
itional benefits and applications of ultrafast plan generation
are described.

Material and methods

Computational plan generation on a GPU

Our in-house developed TPS uses the ray-casting dose calcu-
lation [14], and a quasi-Newtonian fluence optimization [15].
In this work, these algorithms, and other steps of the plan
generation process, were implemented onto dedicated
Aparapi GPU kernels using Java (Oracle Corporation,
Redwood Shores, CA, USA). Aparapi is an opensource frame-
work for executing native Java code on GPUs, based on
OpenCL (Khronos Group, Beaverton, OR, USA). The GPU
implementation is described in detail in the Supplementary
Material. Here we focus on the differences between the clin-
ical and GPU implementation, since these are relevant for
interpreting the results.

Although all GPU algorithms were identical to those in
our clinical TPS, there were three notable differences in their
implementation. First, in the clinical TPS, every field had a
set of separate optimization points defined in the beam
coordinate system, with the dose being transformed and
accumulated to the patient geometry each iteration of the
optimization. For the GPU implementation, identical opti-
mization points were used for every field and the coordinate
transformations could be dropped, speeding up the opti-
mization and mitigating the need for interpolation. Further,
the omission of the interpolation improved the optimization
result. Second, the dose distribution of every pencil beam to
every optimization point was pre-calculated and stored in a

dose deposition matrix we refer to as the Dij matrix. Whilst
the GPU implementation used single precision for floating
point handling, double precision was used in the clinical
implementation. This, however, had a negligible effect on
the results. Finally, for efficiency, dose was optimized only in
the target and organs at risk (OARs) for which constraints
were defined, a region we call the volume relevant for opti-
mization (VRO). For full clinical dose calculations throughout
the CT, we used the clinical dose calculation.

Patient cases

Four different patients, previously treated at our institute
and spanning a spectrum of indications, were chosen to
evaluate the performance of our GPU implementation
(Figure 1). Target volume and plan geometries are provided
in Table 1. For all, plans were generated with our clinical TPS
and then re-generated with the GPU implementation using
identical input data and parameters. GPU calculations were
performed on a workstation consisting of an Intel Xeon four
core 3.5 GHz CPU (v5) and a single Nvidia Quadro
P6000 GPU.

Comparison between the GPU optimized and the
clinical plans

To investigate the quality of the GPU optimization, plans
optimized on the GPU were recalculated with the clinical
dose calculation. From these, dose volume histogram (DVH)
parameters of the clinical target volume (CTV) and planning
target volume (PTV), as well as all relevant OARs were calcu-
lated and compared, and differences to the clinically applied
plans reported.

Comparison to Monte Carlo simulations

To assess the accuracy of the analytical ray-casting algorithm,
all clinical dose plans were compared to full MC simulations.
The clinical dose calculation was used for this comparison,
because the GPU implementation only provided a dose cal-
culation in the VRO. Differences between the GPU and the
clinical implementation however were negligible. MC simula-
tions were performed using TOPAS version 3.0.p1 [16], based
on Geant 4 [17] version 10.02.p01, and using the default
TOPAS physics list [16,18]. All simulations were performed
using the optimized fluence of protons for each field, divided
by 1,000, and dose was scored at the resolution of the plan-
ning CT. The resulting dose distributions were compared
using 3D gamma evaluation (2%/2mm) considering only
voxels with a dose above 10% of the prescription dose and
excluding air voxels. A cutoff of 10% was selected to be
compatible with values in the literature [19].

Results

GPU generated plans for all cases are displayed in Figure 1,
and times for their complete generation reported in Table 1.
For the paraspinal, brain and paranasal patient (3–4 fields,
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PTV volumes 116–519 cm3), all plans were generated in
<10 s, and for the cranio-spinal axis (CSA) patient (2 fields,
volume 2787 cm3) in <25 s. Times for the generation of the
Dij matrix and optimization scaled linearly with the number
of Bragg peaks and optimization points. In contrast, calcula-
tion times required for the preparatory steps (e.g., reading
the input data and placing Bragg peaks) depended mainly
on the size of the VRO and the number of fields.

Plans optimized with the GPU implementation and the
clinically applied plans are compared in Figure 2. Target
parameters were improved for 21 out of 24 parameters,
where for the remaining three parameters, deterioration was
marginal (<1%). Dose–volume parameters of the dosimetri-
cally relevant OARs remained almost identical with no par-
ameter worsening by more than 0.5%. Overall plan quality
remained the same or was slightly improved for the plans
generated with the GPU implementation. The slight improve-
ment was due to the omission of the interpolations during
the optimization.

The ray-casting calculations (as used in the GPU imple-
mentation) and TOPAS MC simulations agreed well, with
Gamma 2%/2mm pass rates of 94.3% for the paraspinal,
97.4% for the CSA, 99.8% for the brain and 93.5% for the
paranasal patient, respectively.

Discussion

A method to fully re-generate proton plans in under 10 s has
been described for small-to-medium sized tumors, and under
25 s for a cranio-spinal irradiation. This enables online adap-
tive proton therapy treatments with little deviation from
plans generated with the normal clinical workflow and our
established and clinically validated TPS.

The times for complete plan generation reported here are
considerably shorter than those reported in the literature.
The main reason being the use of an analytical dose calcula-
tion and a simple, but effective optimization algorithm.
Different groups describe MC based proton plan generation
on GPUs [2,9,12], with substantially longer times for full plan
generation due to the inherently computationally more
intense MC approach. However, dose calculation times
reported here are similar to those reported for the GPU
implementation of an analytical algorithm reported by da
Silva et al. [6]. Optimization times are substantially reduced
in our work, due to the relatively sparse sampling of opti-
mization points, with other publications sampling at the
resolution of the CT grid [2,9,12]. However, we observed no
major improvement in results with our GPU implementation
when using a finer grid. In addition, by combining all steps
into a single coherent, GPU based approach, plan generation
times could be further reduced.

In this work, despite using a simple ray-casting dose cal-
culation, agreement to MC simulations is comparable to
more widely used pencil beam algorithms. This is interesting,
as the ray-casting algorithm uses just a single Gaussian to
describe lateral scatter, thus ignoring inelastic and elastic
scattering processes. Instead, the field dose is scaled by a
boosting factor determined using an empirical model. While
this procedure is a major simplification, it has been shown to
work well clinically over many cases and match the perform-
ance of other analytical calculations reported in the literature
[19,20]. Consequently, for applications where calculation time

Figure 1. Treatment plans generated with the GPU implementation of our in-house developed TPS for four example patient cases: paraspinal, cranio-spinal axis
(CSA), brain and paranasal. The planning target volume is outlined in red.

Table 1. Treatment plan generation time and plan information for the four
patient cases: paraspinal, cranio-spinal axis (CSA), brain and paranasal.

Case Paraspinal CSA Brain Paranasal

Number of fields 3 2 3 4
Number of spots 56,665 182,260 14,870 32,419
Target volume (cm3) 519 2728 116 195
Number of optimization points 20,641 140,896 8411 9556
Number of nonzero elements in Dij [1e6] 94 289 17 81
Total plan generation time (s) 9.9 23.5 4.6 7.4
Preparatory steps calculation time (s) 4.8 6.2 3.3 3.5
Dij calculation time (s) 2.3 9.5 0.6 1.6
Pencil beam fluence optimization time (s) 2.8 7.8 0.7 2.3
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is a critical factor (such as for rapid plan adaption on a daily
basis), analytical calculations still have a role. For instance, it
has been shown elsewhere that anatomical changes affect
the dose distribution to a much larger extent than moving
from analytical to MC dose calculations [21]. Thus, the use of
ultra-fast analytical calculations to enable rapid plan regener-
ation to mitigate anatomical changes could help solve one
of the major uncertainties in proton therapy.

The problem of plan generation for online adaptive pro-
ton therapy has recently been addressed by several authors
[2–5], where it has been recognized that manual user inputs
have to be minimized. As such, Bernatowicz et al. [4], as well
as Jagt et al. [5] follow a strategy of dose restoration, where
they try to reproduce the dose of the original (nominal) plan
on the daily patient geometry, with the aim of simplifying
the clinical plan approval process. The drawback however is
that the re-optimized plan can never be better than the
nominal plan, even if the daily anatomy may allow for
improved target coverage or OAR sparing. Alternatively,
Botas et al. optimized fluences without restriction to restore
the nominal dose distribution, by investigating different
restraints on how the pencil beam positions of the nominal
plan can be restored on the changed anatomy [2]. Both tech-
niques however require the optimization of various parame-
ters in order to obtain acceptable results.

In contrast, the approach described here is to generate a
completely new plan from scratch (using the same field
geometry and dose-volume constraints) which is then inde-
pendent of the nominal plan. For paranasal patients with
changes in the nasal cavity, the use of the same field angles
and OAR constraint priorities as for the nominal plan,
together with complete plan re-generation, has been shown
to provide excellent results without the need for dose

restoration techniques [22]. Indeed, it has also been shown
that improved dose distributions could result due to the
sometimes more advantageous anatomical situation encoun-
tered in the new patient geometry (e.g., less air/bone interfa-
ces due to increased nasal cavity fillings etc.) With the
approach reported here, such advantageous circumstances
can be better exploited. Although this may require the devel-
opment of an automated or simplified plan approval process,
we believe this extra effort is vindicated by the potential
benefits of the approach.

One limitation in the current GPU implementation is that
the dose calculation is limited to the VRO, since only these
voxels are relevant for the optimization, whereas for a thor-
ough dose review, the dose in the whole patient should be
considered. The GPU implementation however can be
extended to calculate the dose over the whole patient
geometry at the end of the optimization, which would only
slightly increase calculation times (2–4 s). On the other hand,
the calculation times quoted here can certainly be reduced
more by, for example, optimizing memory transfers to the
GPU, the gain of which is difficult to estimate. A further limi-
tation of the described GPU implementation arises from the
use of the simple optimization algorithm. With this, full plan
automation might be more difficult to achieve in comparison
to more complex approaches such as interior point [23] or
multi criteria optimization [24].

The speed of this GPU implementation will not only make
it useful for adaptive proton therapy applications, but also
could have a major impact on the way the TPS will be used
for the generation of the initial plan. The computation time
of an IMPT plan generation with our clinically used TPS cur-
rently takes between a few minutes to an hour for larger vol-
umes. This severely limits the possibility to navigate between

Figure 2. Comparison between the DVH parameters of the GPU optimized plans and the clinical plans for the four example cases. In the top row target parameters
are displayed and in the bottom row OAR parameters. Improved parameters are depicted in green and deteriorated parameters in red.
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different beam angles and constraint priorities. With the new
implementation, a wider spectrum of initial parameters can
be tested. For instance, if input parameters or computation
settings are changed, only calculations which are down-
stream of the implied change have to be recalculated. For
example, if only the constraint priorities are changed, the Dij

matrix and all other starting calculations do not have to be
repeated, only the optimization itself. Alternatively, if the
beam angle of one field is changed, only the WED map of
this field and the corresponding part of the Dij matrix have
to be updated, before a new optimization can start. With
this approach of only recalculating the data downstream of
what has been changed, combined with the fast plan gener-
ation times, a new form of highly interactive planning
becomes possible, providing a tool for efficiently searching
the large solution space of IMPT plans.

In conclusion, ultra-fast calculation times for full plan gen-
eration have been achieved with a GPU implementation of a
fast analytical dose calculation, such that the time to com-
pletely generate treatment plans is no longer a limitation for
online adaptive planning. As a clinical implementation of
online adaption also requires additional tasks such as con-
tour propagation and plan specific quality assurance, an
ultra-fast plan generator provides more time to address
these additional tasks. In addition, the approach opens the
door to highly interactive IMPT planning, allowing to effi-
ciently search the IMPT solution space.
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