
1 

Cemdata18: A chemical thermodynamic database for hydrated Portland cements and alkali-1 

activated materials 2 

3 

Barbara Lothenbach1*, Dmitrii A. Kulik2, Thomas Matschei3, Magdalena Balonis4, Luis Baquerizo5, Belay 4 

Dilnesa6, George D. Miron2, Rupert J. Myers7,8  5 

6 
1 Empa, Laboratory for Concrete & Construction Chemistry, CH-8600 Dübendorf, Switzerland 7 

2 Paul Scherrer Institut, Laboratory for Waste Management, 5232 Villigen PSI, Switzerland 8 

3 HTW Dresden University of Applied Sciences, Department of Civil Engineering, 01069 Dresden, Ger-9 

many 10 

4 Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, 11 

CA, USA 12 

5 Lafarge Centre de Recherche, 38291 Saint-Quentin Fallavier, France 13 

6 BASF Schweiz AG, 5082 Kaisten, Switzerland 14 

7 University of Sheffield, Department of Materials Science and Engineering, Sheffield, S1 3JD, UK 15 

8 Current address: University of Edinburgh, School of Engineering, Edinburgh, EH9 3FB, UK 16 

17 

* Corresponding author. Tel: +41 58 765 47 88; barbara.lothenbach@empa.ch18 

Keywords: thermodynamic modelling, cement, database, solubility, C-S-H 19 

20 

For submission to Cement and Concrete Research, version 31.10.2017 21 

22 

Abstract  23 

Thermodynamic modelling can reliably predict hydrated cement phase assemblages and chemical 24 

compositions, including their interactions with prevailing service environments, provided an accurate 25 

and complete thermodynamic database is used. Here, we summarise the Cemdata18 database, which 26 

has been developed specifically for hydrated Portland, calcium aluminate, calcium sulfoaluminate and 27 

blended cements, as well as for alkali-activated materials. It is available in GEMS and PHREEQC com-28 

puter program formats, and includes thermodynamic properties determined from various experimental 29 

data published in recent years. Cemdata18 contains thermodynamic data for common cement hy-30 

drates such as C-S-H, AFm and AFt phases, hydrogarnet, hydrotalcite, zeolites, and M-S-H that are val-31 
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id over temperatures ranging from 0 to at least 100°C. Solid solution models for AFm, AFt, C-S-H, and 32 

M-S-H are also included in the Cemdata18 database.  33 

 34 

1 Introduction  35 

Numerous studies have shown that chemical thermodynamic modelling, coupled with accurate and 36 

complete thermodynamic databases, can reliably predict hydrated cement phase assemblages and 37 

chemical compositions. One of the most interesting aspects of applying thermodynamics to hydrated 38 

cements has been the discovery that the chemical compositions of Al2O3-Fe2O3 mono (AFm) and 39 

Al2O3-Fe2O3 tri (AFt) phases are very sensitive to the presence of carbonate [1-3] and temperature [4-40 

6], thus demonstrating that these factors may significantly modify hydrated cement phase assemblag-41 

es. Experiments have shown that compositions of hydrate cement phase assemblages can alter rapidly, 42 

often within weeks or months, reflecting changing system compositions and temperatures. Thus, 43 

thermodynamic calculations and experiments support each other: on the one hand, calculations enable 44 

more complete interpretations of limited experimental datasets and help to identify key experiments 45 

to perform; and on the other hand, experiments provide the data that are needed to validate calcula-46 

tion results and model parameters.  47 

The quality of thermodynamic modelling results depends directly on the accuracy and completeness of 48 

the input thermodynamic properties of substances and phases, which are usually supplied from a 49 

thermodynamic database. Relevant thermodynamic data for solid cementitious substances, such as the 50 

solubility products of ettringite or hydrogarnet, have been compiled in several specific “cement data-51 

bases” such as (1) the Cemdata07 and Cemdata14 databases [1, 7-12] (http://www.empa.ch/cemdata), 52 

which are available for GEMS [13, 14], (2) the Thermoddem (http://thermoddem.brgm.fr/) database 53 

[15, 16] available for the Geochemists Workbench® [17](https://www.gwb.com/) and PHREEQC [18] or 54 

(3) HATCHES database [19] available for PHREEQC [18]. Data in the first two databases are generally 55 

comparable, although some differences exist, as discussed in more detail in Damidot et al. [20]. Our 56 

experience applying Cemdata in thermodynamic modelling applications underlines the importance of 57 

a careful data selection and evaluation process, and of including sensitivity analyses into the analysis 58 

and discussion of results.  59 

Additional experimental data, and thermodynamic properties derived from these data, have become 60 

available since the first compilation of Cemdata07 in 2007/2008 and subsequent compilation of 61 

Cemdata14 in 2013/2014 [1, 7, 21]. Cemdata18 provides a significant update to both Cemdata07 and 62 

Cemdata14. Cemdata18 is written into a format supporting the GEM-Selektor code [13, 14] and is fully 63 

compatible with the freely  available GEMS-Selektor version of the PSI-Nagra 12/07 TDB [22, 23] 64 

(http://gems.web.psi.ch/). PSI/Nagra 12/07 TDB [22] contains the same entries for aqueous spe-65 

cies/complexes relevant to cement systems as the PSI/Nagra 01/01 [24], with only slight changes: the 66 

thermodynamic properties of Si4O8(OH)4
4- and AlSiO3(OH)4

3- were added, while the complex Al-67 

SiO(OH)6
- was removed. The GEMS version of the PSI/Nagra 12/07 TDB includes further changes to the 68 

thermodynamic properties of Al bearing species/complexes and the addition of Helgeson-Kirkham-69 

Flowers equation of state parameters to account for changes in temperature and pressure [25, 26]. 70 
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Cemdata18 includes a comprehensive selection of cement hydrates commonly encountered in Port-71 

land cement (PC) systems in the temperature range of 0 to 100°C, including calcium silicate hydrate (C-72 

S-H), magnesium silicate hydrate (M-S-H), hydrogarnet, hydrotalcite-like phases, some zeolites, AFm 73 

and AFt phases, and various solid solutions used to describe the solubility of these phases. Solubility 74 

constants have generally been calculated based on critical reviews of all available experimental data 75 

and from additional experiments made either to obtain missing data or to verify existing data. Addi-76 

tional solubility data were measured and compiled using temperatures ranging from 0 to 100°C in 77 

many instances, as documented in [9, 12, 27, 28]. Numerous solid solutions among AFm and AFt 78 

phases, siliceous hydrogarnets, hydrotalcite-like phases, C-S-H, and M-S-H have been observed and 79 

are included in Cemdata18.  80 

Several C-S-H solid solution models, as well as two models for hydroxide-hydrotalcite are available in 81 

Cemdata18. The CSHQ model from [11] and the OH-hydrotalcite end member with Mg/Al = 2 are well 82 

adapted for PC. Although the CSHQ model is able to describe the entire range of Ca/Si ratios encoun-83 

tered, it is best used for high Ca/Si C-S-H, as it still lacks the ability to predict aluminium uptake, which 84 

is of less importance for Portland cements than for blended cements. For alkali activated binders, the 85 

calcium (alkali) aluminosilicate hydrate (C-(N-)A-S-H) gel  model, with lower calcium but higher alu-86 

minium and alkali content than in the C-S-H type phase which exists in hydrated PC, and a Mg-Al lay-87 

ered double hydroxide with variable Mg/Al ratio, are available. 88 

This paper summarises Cemdata18, which includes the most important additions to the Cemdata07 89 

and Cemdata14 databases in recent years. It also discusses the relevance and implications of these ad-90 

ditions, and compares Cemdata07 and Cemdata18, accounting for their main differences. Summaries 91 

of the thermodynamic data compiled in the Cemdata18 database are available in formats supported 92 

(readable) by the computer programs GEM-Selektor [13, 14] and PHREEQC [18]. Both of these Cemda-93 

ta18 variants can be freely downloaded from http://www.empa.ch/cemdata. 94 

 95 

2 Thermodynamic data for cements 96 

Recent experimental data has enabled the Cemdata07 and Cemdata14 databases to be extended and 97 

refined [1, 7, 21]. We report this more comprehensive and refined dataset here as Cemdata18, com-98 

piled in several tables. Cemdata18 has been developed to predict changes in chemistry that occur dur-99 

ing the hydration of Portland, blended and alkali activated cements, and also their interactions with 100 

service environments during use.  101 

Table 1 reports the thermodynamic properties of minerals important for cementitious systems, while 102 

Table 2 reports their solubility products referring to the dominate species present at the high pH val-103 

ues of cementitious systems. The data for hydrotalcite-like phases and detailed discussions of the dif-104 

ferent models for C-S-H are given in sections 2.6 and 2.7. Standard thermodynamic data for minerals 105 

such as calcite, brucite and aqueous and gaseous species already documented in the PSI-Nagra chem-106 

ical thermodynamic database [22] are not repeated in these tables, but given only in summary tables in 107 

Appendix B and D. To enable users to model cementitious systems using the Cemdata18 dataset with 108 
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the law of mass action (LMA) geochemical modelling package PHREEQC [18], a variant of the Cemda-109 

ta18 dataset has been generated as documented in Appendix B. 110 

 111 

Table 1: Cemdata18 database: Standard thermodynamic properties at 25°C and 1 bar. Update of 112 

Cemdata07 [1, 7, 29]. The data are compatible with the GEMS version of the PSI/Nagra 12/07 TDB [22, 113 

23]. Standard properties of master species and properties of reactions of forming product species out 114 

of master species, commonly used in LMA programs such as PHREEQC, are compiled in the Appendix 115 

B. 116 

 ∆fG° ∆fH° S°  a0  a1 a2 a3 V° Ref 117 

 [kJ/mol] [kJ/mol]  [J/K/mol]  [J/K/mol] [J/mol/K2] [J K/mol] [J/K0.5/mol] [cm3/mol] 118 

Solids 119 
AFt-phases 120 
 (Al-)ettringitea,b,c -15205.94 -17535 1900 1939 0.789 - - 707 [1, 7] 121 
C6As3H30

c
 -14728.1  -16950.2  1792.4  1452  2.156 - - 708 [30] 122 

C6As3H13 -10540.6  -11530.3  1960.4  970.7 1.483 - - 411 [30] 123 
C6As3H9 -9540.4  -10643.7  646.6  764.3 1.638 - - 361 [30] 124 
tricarboaluminatea -14565.64  -16792 1858 2042 0.559  -7.78·106 - 650  [1, 7] 125 
Fe-ettringiteb -14282.36  -16600  1937  1922  0.855  2.02·106 - 717 [1, 21] 126 
Thaumasite -7564.52 -8700 897.1 1031 0.263 -3.40·106 - 330 [28] 127 
 128 
Hydrogarnet 129 
C3AH6

 d
 -5008.2  -5537.3 422  290  0.644  -3.25·106 - 150  [9, 12] 130 

C3AS0.41H5.18
* d

 -5192.9  -5699 399  310 0.566 -4.37·106 - 146 [9] 131 
C3AS0.84H4.32

* e
 -5365.2  -5847 375  331 0.484 -5.55·106 - 142 [9] 132 

C3FH6
*** f

 -4122.8  -4518  870  330 1.237  -4.74·106 - 155  [9] 133 
 134 
Al-Fe siliceous hydrogarnet (solid solution) 135 
C3FS0.84H4.32

 e,f
 -4479.9  -4823 840  371 0.478 -7.03·106 - 149 [9] 136 

C3A0.5F0.5S0.84H4.32
e -4926.0  -5335 619  367 0.471 -8.10·106 - 146 [9] 137 

 138 
C3FS1.34H3.32 -4681.1  -4994 820 395 0.383 -8.39·106 - 145 [9] 139 
 140 
AFm-phases 141 
C4AH19 -8749.9  -10017.9  1120 1163  1.047  - -1600  369  [12, 31] 142 
C4AH13

 g
 -7325.7  -8262.4  831.5 208.3  3.13  - - 274  [31] 143 

C4AH11 -6841.4  -7656.6  772.7  0.0119 3.56 1.34·10-7 - 257 [31] 144 
C2AH7.5

  -4695.5    -5277.5  450  323  0.728  - - 180  [12] 145 
CAH10 -4623.0 -5288.2 610 151 1.113 - 3200 193 [12] 146 
C4Ac0.5H12

 
 -7335.97  -8270  713  664  1.014  -1.30·106 -800  285  [1, 7] 147 

C4Ac0.5H10.5 -6970.3 -7813.3  668.3  0.0095 2.836  1.07·10-7 - 261 [31] 148 
C4Ac0.5H9 -6597.4 -7349.7  622.5  0.0088 2.635  9.94·10-8 - 249 [31] 149 
C4AcH11 -7337.46  -8250  657  618  0.982  -2.59·106 - 262  [1, 7] 150 
C4AcH9 -6840.3  -7618.6  640.6  192.4  2.042 - -  234 [31] 151 
C4AsH16 -8726.8  -9930.5  975.0  636  1.606 - - 351 [31, 32] 152 
C4AsH14 -8252.9  -9321.8  960.9  1028.5  -  - - 332 [31, 32] 153 
C4AsH12

 g, h
 -7778.4  -8758.6  791.6  175  2.594 -  - 310 [31, 32] 154 

C4AsH10.5 -7414.9  -8311.9  721  172 2.402 - -  282 [31, 32] 155 
C4AsH9 -7047.6  -7845.5  703.6  169  2.211 - -  275 [31, 32] 156 
C2ASH8

i
 -5705.15  -6360  546  438  0.749  -1.13·106 -800  216  [1, 7] 157 

C2ASH7
i
 -5464.0 -6066.8  487.6  0.0063 1.887 7.12·10-8 - 215 [31] 158 

C2ASH5.5 -5095.2 -5603.4  454.8  0.0057 1.685 6.36·10-8 - 213 [31] 159 
C4As0.5ClH12

 
 -7533.4 -8472j 820  557 1.141  -1.02·106  751  289 [27, 33] 160 
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C4ACl2H10
k
 -6810.9 -7604  731  498  0.895  -2.04·106 1503 272  [33, 34] 161 

C4A(NO3)2H10 -6778.1 -7719.3  821  580  1.02  -2.77·106 872 296 [34, 35] 162 
C4A(NO2)2H10 -6606.8 -7493.1 799 565 0.99 -2.24·106  703  275 [34-36] 163 
 164 
C4FH13

** 
 -6438.6 -7435  630  694  1.113  2.02·106 1600  286  [9] 165 

C4Fc0.5H10 -5952.9 -6581  1270  308  1.201  -9.08·105 3200  273  [8] 166 
C4FcH12 -6674.0  -7485  1230  612  1.157  -5.73·105 - 292  [8] 167 
C4FsH12

 h
 -6873.2  -7663  1430 577  1.234  2.02·106 - 321  [10] 168 

C2FSH8     not stable     [37] 169 
C4FCl2H10

k
 -5900.1 -6528l 1286  481  0.961  -1.61·104 1503 278l [37] 170 

 171 
Sulfates 172 
Cs (anhydrite) -1322.12 -1434.60 106.7 70.2 -0.099 - - 46 [22, 23] 173 
CsH2 (gypsum) -1797.76 -2023.36 193.8 91.4 -0.318 - - 75 [22, 23] 174 
CsH0.5(hemihyd) -1436.34m -1575.3m 134.3 124.1 - - - 62 [38] 175 
syngenite -2884.91 -3172 326 201 0.308 -1.78·106 - 128n [29] 176 
 177 
(Hydr)oxides 178 
Al(OH)3(am)  -1143.2  - not defined     32  [1] 179 
Al(OH)3(mic)  -1148.4  -1265.3o 140o 36  0.191  - - 32  [12] 180 
Al(OH)3(gibbsite)* -1151.0  -1288.7 70.1  36.2  0.191  - - 32  [22, 23] 181 
 182 
Fe(OH)3(am) -700.1   not defined     [22, 23] 183 
Fe(OH)3(mic) -711.6   not defined     [22, 23] 184 
FeOOH(mic) -480.14  -551.1  60 1.25 -0.233  -3.14·105 - 21  [9, 22] 185 
FeOOH(goethite) *

 -497.26 -568.2  60 1.25 -0.233  -3.14·105 - 21  [22, 23] 186 
 187 
CH (portlandite) -897.01 -985 83 187 -0.022 - -1600 33 [22, 23] 188 
SiO2

 (am) -848.90  -903  41  47  0.034  -1.13·106 - 29  [1, 7] 189 
SiO2

 (quartz) * -854.79  -909  41  47  0.034  -1.13·106 - 29  [22, 23] 190 
 191 
Hydrotalcite-pyroaurite (solid solution)   192 
½M6AcH13 

p -4339.85  -4875.9  411 512.6 - - - 115  [39] 193 
½M6FcH13 

p -3882.60  -4415.1  423 521.7 - - - 119  [39] 194 
 195 
M-S-H (solid solution)   196 
Mg/Si=0.75 197 
M1.5S2H2.5 

q -3218.43  -3507.52  270r  318r - - - 95    [40] 198 
Mg/Si =1.5 199 
M1.5SH2.5

 q -2355.66  -2594.22  216r  250r - - - 74    [40] 200 
 201 
Zeolites 202 
Zeolite P(Ca) * -5057.8 -5423 779 753 - - - 153 s [41] 203 
Natrolite*  -5325.7 -5728 360 359 - - - 169 s [41] 204 
Chabazite  -7111.8 -7774 581 617 - - - 251 s [41] 205 
Zeolite X(Na)  -5847.5 -6447 566 586 - - - 214 t [41] 206 
Zeolite Y(Na)  -7552.5 -8327 734 739 - - - 283 u [41] 207 
 208 
Clinkers 209 
C3S -2784.33 -2931 169 209 0.036 -4.25·106 - 73  [1, 7, 42] 210 
C2S -2193.21 -2308 128 152 0.037 -3.03·106 - 52  [1, 7, 42] 211 
C3A -3382.35 -3561 205 261 0.019 -5.06·106 - 89  [1, 7, 42] 212 
C12A7 -18451.44 -19414 1045 1263 0.274 -2.31·107 - 518 v [42] 213 
CA -2207.90 -2327 114 151 0.042 -3.33·106 - 54 w [42] 214 
CA2 -3795.31 -4004 178 277 0.023 -7.45·106 - 89 x [42] 215 
C4AF -4786.50 -5080 326 374 0.073 - - 130 [1, 7, 42] 216 
C (lime) -604.03 -635 39.7 48.8 0.0045 -6.53·105 - 17 [43] 217 
 218 
Ks (K2SO4 arcanite) -1319.60 -1438 176 120 0.100 -1.78·106 - 66 [44] 219 
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K (K2O) -322.40 -363 94 77 0.036 -3.68·105 - 40 [43] 220 
Ns (Na2SO4 thenardite) -1269.80 -1387 150 58 0.023 - - 53 [44] 221 
N (Na2O) -376.07 -415 75 76 0.020 -1.21·106 - 25 [43] 222 
a0, a1, a2, a3 are the empirical coefficients of the heat capacity function: C°p= a0 +a1T+a2T -2 +a3T -0.5; heat capacity functions for 223 
cement hydrates are typically valid up to 100°C only; ”-” = 0. Cement shorthand notation is used: A = Al2O3; C = CaO; F = Fe2O3; 224 
H =H2O; M = MgO; S = SiO2; c = CO2; s = SO3; 225 
* precipitates very slowly at 20°C, generally not included in calculations; ** tentative value;.  226 
a, non-ideal solid solutions; miscibility gap: XSO4,solid=0.1–0.55 reproduced with the dimensionless Guggenheim interaction param-227 
eters α0 = 1.67 and α1 = 0.946; downscaled in this paper to 1CO2: : 1SO3 replacement, instead of the 3CO2: : 3SO3 used in [4, 7]., b, 228 
non-ideal solid solution; miscibility gap: XAl,solid=0.25–0.65 reproduced with the dimensionless Guggenheim interaction parame-229 
ters α0 = 2.1 and α1 = -0.169 [45]. c,d,e,f,i,k,,p,q ideal solid solutions c.f. [9, 11, 30, 39]. g, non-ideal solid solutions; miscibility gap: 230 
XOH,solid= 0.50-0.97 reproduced with the dimensionless Guggenheim interaction parameters α0 = 0.188 and α1 = 2.49 [7] h non-231 
ideal solid solutions; miscibility gap: XAl,solid=0.45–0.95 reproduced with the dimensionless Guggenheim interaction parameters α0 232 
= 1.26 and α1 = 1.57 [10]. j typing error in [27], recalculated from Gf° and S from [27]. l typing error in [37], recalculated from Gf° 233 
and S from [37]. Volume calculated from XRD data [37]. m recalculated from Gr° of -20500 J/mol [38]. n calculated from density 234 
data from [33, 46]. o valid up to 60°C only, estimated to describe solubility of microcrystalline Al(OH)3 aged for 19 months be-235 
tween 5 to 60°C [12]. r Estimated from Cp and S of talc, chrysotile and H2O using data from [43]. s volume from [47]. t calculated 236 
from XRD data: pdf 00-038-0237 [48]; u calculated from XRD data; pdf 00-039-1380 [49], v: [50], w [51], x [52] 237 

 238 

 239 

Table 2: Equilibrium solubility products of solids and formation constants for calcium-silica complexes 240 

at 1 bar, 25°C in Cemdata18 (as given in Table 1). 241 

Mineral log KS0 Dissolution reactions used to calculate solubility products.  242 

Solids 243 
(Al-)ettringite -44.9 Ca6Al2(SO4)3(OH)12·26H2O  6Ca2+ + 2Al(OH)4

- + 3SO4
2- + 4OH- + 26H2O 244 

tricarboaluminate -46.5  Ca6Al2(CO3)3(OH)12·26H2O  6Ca2+ + 2Al(OH)4
-- + 3CO3

2- + 4OH- + 26H2O 245 
Fe-ettringite -44.0  Ca6Fe2(SO4)3(OH)12·26H2O  6Ca2+ + 2Fe(OH)4

- + 3SO4
2- + 4OH- + 26H2O 246 

thaumasite -24.75 Ca3(SiO3)(SO4)(CO3)·15H2O  3Ca2+ +H3SiO4
- + SO4

2- +CO3
2- +OH- +13H2O 247 

 248 
C3AH6 -20.50  Ca3Al2(OH)12   3Ca2+ + 2Al(OH)4

- + 4OH-  249 
C3AS0.41H5.18

* -25.35  Ca3Al2(SiO4)0.41(OH)10.36  3Ca2+ + 2Al(OH)4
- + 0.41 SiO(OH)3

-+ 3.59OH- - 1.23H2O 250 
C3AS0.84H4.32

* -26.70  Ca3Al2(SiO4)0.84(OH)8.64  3Ca2+ + 2Al(OH)4
- + 0.84 SiO(OH)3

-+ 3.16OH- - 2.52H2O 251 
C3FH6 -26.30** Ca3Fe2(OH)12   3Ca2+ + 2Fe(OH)4

- + 4OH-  252 
C3FS0.84H4.32 -32.50 Ca3Fe2(SiO4)0.84 (OH)8.64   3Ca2+ + 2Fe(OH)4

- + 0.84 SiO(OH)3
-+ 3.16OH- - 2.52H2O 253 

C3(F,A)S0.84H4.32 -30.20  Ca3FeAl(SiO4)0.84 (OH)8.64  3Ca2+ + Al(OH)4
- +Fe(OH)4

- + 0.84 SiO(OH)3
-+ 3.16OH- - 2.52H2O 254 

C3FS1.34H3.32 -34.20 Ca3Fe2(SiO4)1.34 (OH)6.64   3Ca2+ + 2Fe(OH)4
- + 1.34 SiO(OH)3

-+ 2.66OH- - 4.02H2O 255 
 256 
C4AH19 -25.45 Ca4Al2(OH)14·12H2O   4Ca2+ + 2Al(OH)4

- + 6OH- + 12H2O 257 
C4AH13 -25.25 *** Ca4Al2(OH)14·6H2O   4Ca2+ + 2Al(OH)4

- + 6OH- + 6H2O 258 
C2AH7.5 -13.80 Ca2Al2(OH)10·2.5H2O   2Ca2+ + 2Al(OH)4

- + 2OH- + 2.5H2O  259 
CAH10 -7.60 CaAl2(OH)8·6H2O   Ca2+ + 2Al(OH)4

- + 6H2O 260 
C4Ac0.5H12 -29.13 Ca4Al2(CO3)0.5(OH)13·7H2O  4Ca2+ + 2Al(OH)4

- + 0.5CO3
2- + 5OH- + 7H2O 261 

C4AcH11 -31.47 Ca4Al2(CO3)(OH)12·5H2O   4Ca2+ + 2Al(OH)4
- + CO3

2- + 4OH- + 5H2O 262 
C4AsH14 -29.26 Ca4Al2(SO4)(OH)12·6H2O   4Ca2+ + 2Al(OH)4

- + SO4
2- + 4OH- + 6H2O 263 

C4AsH12 -29.23 *** Ca4Al2(SO4)(OH)12·6H2O   4Ca2+ + 2Al(OH)4
- + SO4

2- + 4OH- + 6H2O 264 
C2ASH8 -19.70 Ca2Al2SiO2(OH)103H2O   2Ca2+ + 2Al(OH)4

- + 1SiO(OH)3
-+ OH- +2H2O 265 

Friedel’s salt -27.27 Ca4Al2Cl2(OH)12·4H2O   4Ca2+ + 2Al(OH)4
- + 2Cl- + 4OH- + 4H2O 266 

Kuzel’s salt -28.53 Ca4Al2Cl(SO4)0.5(OH)12·6H2O  4Ca2+ + 2Al(OH)4
- + Cl- + 0.5SO4

2- + 4OH- + 6H2O 267 
Nitrate-AFm  -28.67 Ca4Al2(OH)12(NO3)2·4H2O  4 Ca2+ + 2 Al(OH)4

- + 2 NO3
- + 4OH- + 4H2O   268 

Nitrite-AFm  -26.24 Ca4Al2(OH)12(NO2)2·4H2O  4 Ca2+ + 2 Al(OH)4
- + 2 NO2

- + 4OH- + 4H2O    269 
 270 
C4FH13 -30.75** Ca4Fe2(OH)14·6H2O   4Ca2+ + 2Fe(OH)4

- + 6OH- + 6H2O 271 
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Fe-hemicarbonate -30.83  Ca4Fe2(CO3)0.5(OH)13·3.5H2O  4Ca2+ + 2Fe(OH)4
- + 0.5CO3

2- + 5OH- + 3.5H2O 272 
Fe-monocarbonate -34.59  Ca4Fe2(CO3)(OH)12·6H2O   4Ca2+ + 2Fe(OH)4

- + CO3
2- + 4OH- + 6H2O 273 

Fe-monosulfate -31.57  Ca4Fe2(SO4)(OH)12·6H2O   4Ca2+ + 2Fe(OH)4
- + SO4

2- + 4OH- + 6H2O 274 
Fe-Friedel’s salt -28.62 Ca4Fe2Cl2(OH)12·4H2O   4Ca2+ + 2Fe(OH)4

- + 2Cl- + 4OH- + 4H2O 275 
 276 
Cs (anhydrite) -4.357 CaSO4    Ca2+ + SO4

2-  277 
CsH2 (gypsum) -4.581 CaSO4·2H2O    Ca2+ + SO4

2- + 2H2O  278 
CsH0.5(hemihydrate) -3.59 CaSO4·0.5H2O    Ca2+ + SO4

2- + 0.5H2O   279 
syngenite -7.20 K2Ca(SO4)2·H2O   2K+ + Ca2+ + 2SO4

2- + H2O 280 
 281 
Al(OH)3(am) 0.24  Al(OH)3(am)   Al(OH)4

- - OH- - H2O 282 
Al(OH)3(mic) -0.67  Al(OH)3(mic)   Al(OH)4

- - OH- - H2O 283 
Al(OH)3(gibbsite) *

 -1.12  Al(OH)3(gibbsite)   Al(OH)4
- - OH- - H2O 284 

 285 
Fe(OH)3(am) -2.6 Fe(OH)3(am)   Fe(OH)4

- - OH-- H2O 286 
Fe(OH)3(mic) -4.6 Fe(OH)3(mic)   Fe(OH)4

- - OH- - H2O 287 
FeOOH(mic) -5.6  FeOOH(mic)   Fe(OH)4

- - OH- - 2H2O 288 
FeOOH(goethite) *

 -8.6 FeOOH(goethite)   Fe(OH)4
- - OH- - 2H2O 289 

 290 
CH -5.2 Ca(OH)2    Ca2+ + 2OH-  291 
SiO2(am) -2.714  SiO2 (am)   SiO2

0 292 
SiO2(quartz) *

 -3.746  SiO2(quartz)  SiO2
0 293 

 294 
1/2M6AcH13 -33.29***  Mg3Al(OH)8(CO3)0.5·2.5H2O   3Mg2+ + Al(OH)4

- + 0.5CO3
2-.+ 4OH- + 2.5H2O 295 

1/2M6FcH13 -33.64*** Mg3Fe(OH)8(CO3)0.5·2.5H2O   3Mg2+ + Fe(OH)4
- + 0.5CO3

2-.+ 4OH- + 2.5H2O 296 
 297 
M1.5S2H2.5 -28.80  (MgO)1.5(SiO2)2(H2O)2.5    1.5Mg2+ + 2SiO2

0 + 3OH- + H2O 298 
M1.5SH2.5 -23.57  (MgO)1.5SiO2(H2O)2.5    1.5Mg2+ + SiO2

0 + 3OH- + H2O 299 
 300 
Zeolite P(Ca) * -20.3 CaAl2Si2O8·4.5H2O   Ca2+ + 2Al(OH)4

- + 2SiO2
0 + 0.5H2O 301 

Natrolite * -30.2 Na2Al2Si3O10·2H2O   2Na+ + 2Al(OH)4
- + 3SiO2

0 - 2H2O 302 
Chabazite  -25.8 CaAl2Si4O12·6H2O   Ca2+ + 2Al(OH)4

- + 4SiO2
0 + 2H2O 303 

Zeolite X(Na)  -20.1 Na2Al2Si2.5O9·6.2H2O   2Na+ + 2Al(OH)4
- + 2.5SiO2

0 + 2.2H2O  304 
Zeolite Y(Na)  -25.0 Na2Al2Si4O12·8H2O   2Na+ + 2Al(OH)4

- + 4SiO2
0 + 4H2O 305 

 306 
Calcium silicate complexes 307 
CaHSiO3

+ 1.2*v Ca2+ + HSiO3
2-   CaHSiO3

+ 308 
CaSiO3

0 4.6*v Ca2+ + SiO3
2-   CaSiO3

0 309 
* precipitates very slowly at 20°C, generally not included in calculations; ** tentative value; *** recalculated in this pa-310 
per from Gf° values. *v The formation of less strong calcium silicate complexes have been recently suggested (log 311 
K(CaHSiO3

+) = 0.5 and log K( CaSiO3
0) = 2.9. Within Cemdata18, however, the listed values for calcium silicate 312 

complexes have to be used to maintain compatibalilty with the C-S-H models. 313 

 314 

 315 

2.1 Solubility of Al(OH)3 and its effect on calcium aluminate and calcium sul-316 

foaluminate cements  317 

The solubility of precipitated Al(OH)3 decreases with time. Initially “amorphous” or poorly ordered 318 

Al(OH)3 precipitates with a solubility product of approximately 0±0.2. With time, the degree of order-319 

ing increases, and microcrystalline Al(OH)3 forms, while the solubility product decreases to -0.7 after 2 320 

years. The solubility of hydrothermally prepared gibbsite is with -1.1 lower as illustrated in Figure 1, 321 

however its formation is not expected within the timeframe of months to years generally considered 322 

for hydrating cements. At 60°C and above, it is expected that microcrystalline Al(OH)3 does not persist, 323 

but that gibbsite forms relatively fast (Figure 1). The solubility of Al(OH)3 determines whether CAH10 (as 324 
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in the presence of Al(OH)3 with log KS0 ≥-0.6 at 25°C) is formed initially in calcium aluminate cements 325 

or whether it converts to C3AH6 and microcrystalline Al(OH)3 [12]. The decrease of the solubility of 326 

Al(OH)3 with time is also responsible for the initial occurrence of CAH10 and ettringite instead of mono-327 

sulfate plus microcrystalline Al(OH)3 in some calcium sulfoaluminate cements, as discussed in more de-328 

tail in [53].  329 

Which Al(OH)3 modification (see Table 1) should be taken into account depends mainly on the 330 

timeframe and the temperature considered. While gibbsite should be allowed to form at temperatures 331 

above 60°C, its precipitation should be suppressed for calculations at ambient temperatures, where 332 

microcrystalline Al(OH)3 will form instead. Within very short timeframes (minutes to hour), possibly on-333 

ly amorphous Al(OH)3 should be allowed to precipitate. Similarly, also the formation of some other 334 

stable phases such as goethite (FeOOH), hematite (Fe2O3) and quartz (SiO2) should be suppressed in 335 

calculations of hydrated cements in favour of their more disperse counterparts: microcrystalline 336 

FeOOH (or microcrystalline or amorphous Fe(OH)3, depending on the timeframe considered), and 337 

amorphous SiO2.  338 

 339 

 340 

Figure 1: Logarithm of the solubility product of Al(OH)3 (referring to Al(OH)4
- and OH-) as a function of 341 

time and temperature calculated from the literature, adapted from [12]. Gibbsite solubility (dotted line) 342 

was calculated using data from the GEMS version of the PSI/Nagra 12/07 TDB [22, 23], whereas the 343 

solubility of microcrystalline Al(OH)3 (black line) and amorphous Al(OH)3 (black hyphen) was calculated 344 

based on the data given in Table 1. 345 

 346 

2.2 Thaumasite  347 

Damidot et al. [54] obtained solubility data to derive a solubility constant for thaumasite at 25°C, at 348 

which temperature thaumasite was considered to be stable. Invariant points were calculated for phase 349 
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assemblages including thaumasite in the system CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O. Schmidt et al. 350 

[55] used the solubility data of Macphee and Barnett [56] to derive thermodynamic data for 351 

thaumasite over the temperature range 1 to 30°C to confirm experimental data showing formation of 352 

thaumasite in mortars at 8 and 20°C. Another set of solubility data at 8°C for natural thaumasite was 353 

reported by Bellmann [57] who also highlighted the potential pathways of formation of thaumasite at 354 

this temperature. Macphee and Barnett [56] obtained the solubility data of ettringite-thaumasite solid 355 

solutions in the temperature range between 5°C and 30°C; no apparent decomposition of thaumasite 356 

and related solid solutions occurred after 6 months storage at 30°C, which suggests the persistence of 357 

thaumasite at temperatures at least up to ~30°C. A complete solubility dataset representative for the 358 

stability range of thaumasite was missing, as [56] reported the solubility data for thaumasite-ettringite 359 

solid-solutions but not for pure thaumasite. Hence, due to a lack of experimental data, no thermody-360 

namic data for thaumasite were included in the Cemdata07 database, but were added in a first update 361 

using the data derived in Schmidt et al. [55] based on the solubility data given by Macphee and Bar-362 

nett [49]. In 2015, Matschei and Glasser [28] published a new dataset obtained on apparently pure-363 

phase synthetic thaumasite. It was shown that pure thaumasite was thermally stable up to 68±5°C. The 364 

obtained new data agreed well, within limits of error, with those obtained by Macphee and Barnett 365 

[56], but differs significantly from the data for natural thaumasite reported by Bellmann [57] at 8°C. Ex-366 

periments done by [28, 56] excluded atmospheric carbon dioxide, whereas the solubility determina-367 

tions reported in [57] were made in the presence of air containing carbon dioxide. The contact with the 368 

air may lead to the decomposition of thaumasite, which would make the interpretation of the solubility 369 

data invalid.  370 

 371 

Figure 2: Calculated solubility products referring to Ca2+, SiO(OH)3
-, SO4

2-, CO3
2-, OH- and H2O of syn-372 

thetic and natural thaumasite samples from solubility experiments. The curve shows the calculated 373 

best fit using a three-term temperature extrapolation. Reproduced from [28]. 374 
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The heat capacities were estimated using a reference reaction with a solid having a known heat capaci-376 

ty and similar structure, as discussed in more detail in [55] and [28]. As shown by Helgeson et al. [43], 377 

this principle can be successfully applied to estimate the heat capacity of silicate minerals by formulat-378 

ing a reaction involving a structurally-related mineral of known heat capacity. 379 

 380 

Finally, it is possible to do an internal consistency check and recalculate solubilities under the chosen 381 

experimental conditions with the thermodynamic data of the Cemdata18 dataset. As illustrated in Fig-382 

ure 3, the calculated solubility data for thaumasite show generally good agreement with the experi-383 

mentally-derived dataset. Despite an underestimation of the calculated silicon concentrations at 1C 384 

and 5C, both datasets, experimental and calculated, generally agree, proving the internal consistency 385 

of the data. Especially in the temperature range from 1 to ~40C, where the solid phase assemblage 386 

consists mainly of thaumasite and traces of calcite, differences between experimental calcium and sul-387 

fate concentrations are within analytical errors. In the temperature range 1C to ~ 40C, concentrations 388 

of calcium, sulfate and silicon increase with rising temperature, whereas calculated carbonate concen-389 

trations show a continuous decrease. At temperatures > ~40C, calcium and sulfate concentrations in-390 

crease significantly, whereas silicon concentrations decrease due to the formation of C-S-H. 391 

Thaumasite is absent at temperatures above 70C. 392 

 393 

Figure 3: Experimentally measured (markers) and re-calculated (lines) solubility data for thaumasite; 394 

(filled markers represent the experimental data for synthetic thaumasite, open markers – the data for 395 

natural thaumasite from [28]). Calculations are based on the new thermodynamic data for thaumasite 396 

complemented with the CSHQ data from Cemdata18 [1, 7]. Predicted solid phases/ phase assemblages 397 

are shown along the top. 398 
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2.3 Chloride-, nitrate-, and nitrite-AFm phases  400 

Binding of chloride and the formation of chloride bearing cement hydrates has been widely studied 401 

due to its impact on the corrosion of steel in reinforced concrete. The first comprehensive solubility 402 

data for Friedel’s salt (Ca4Al2Cl2(OH)12·4H2O) and Kuzel’s salt (Ca4Al2Cl(SO4)0.5(OH)12·6H2O) were provid-403 

ed in the late nineties. Birnin-Yauri [58] has described the dissolution of Friedel’s salt as congruent and 404 

provided values of log KS0  −27.1 and -24.8 (KS0 ={Ca2+}4{Al(OH)4
-}2{Cl-}2{OH-}4{H2O}4). Hobbs [59] esti-405 

mated log KS0 as −27.6±0.9 and Bothe [60] has estimated via geochemical modeling that the solubility 406 

product of Friedel’s salt should fall within the range −28.8 < log KS0 < −27.6. Balonis et al. [27] provid-407 

ed solubility data for Friedel’s salt as a function of time and temperature with an estimated value of 408 

solubility product for an ideal composition and at room temperature to be -27.27 [34, 36]. Compilation 409 

of the available solubility data is shown by triangles on Figure 4. 410 

The estimated thermodynamic data [36] (∆fG0 ∼ -6810.9 kJ/mol, ∆fH0 ∼ −7604 kJ/mol, S0 731 J/mol K) 411 

have similar values (except the entropy) to the dataset published by Blanc et al. [16] 412 

(∆fG0 ∼ −6815.44 kJ/mol, ∆fH0 ∼ −7670.04 kJ/mol, S0 527.70  J/mol K), and agree reasonably well with 413 

the data obtained by Grishchenko et al. [61] (∆fG0 estimated in a range between 6800 and 6860 kJ/mol, 414 

S0 ∼ 680 J/mol K), though it should be kept in mind that Grishchenko‘s composition is reported to be 415 

slightly contaminated with carbonate ions. Attempts to synthesize Cl-AFt at temperatures above 0°C  416 

were unsuccessful [34], hence no thermodynamic data are available that can be used.  417 

 418 

Figure 4: Solubility products of Friedel’s salt, Kuzel’s salt, NO3-AFm and NO2-AFm (referring to reac-419 

tions using Ca2+, Cl-, SO4
2-, NO3

-, NO2
-, OH- and H2O as indicated in Table 2) as a function of tempera-420 

ture. Data for Friedel’s salt from [27, 58-60, 62], data for other AFm are from Balonis and co-workers 421 

[27, 34-36].  422 

 423 

Glasser et al. [62] first measured the solubility of Kuzel’s salt and noted that its dissolution is strongly 424 

incongruent, with ettringite precipitating as a secondary phase. From the solubility data given by 425 

Glasser et al. a log KS0 of Kuzel’s salt -28.54 (KS0 ={Ca2+}4{Al(OH)4
-}2{Cl-}{SO4

2-}0.5{OH-}4{H2O}6) was esti-426 

mated [27]. Balonis et al. [27] has also experimentally derived the solubility data and calculated solubil-427 
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ity products for Kuzel’s salt at different temperatures ranging from 5 to 85°C for the period between 1-428 

12 months, with the solubility product at room temperature determined to be log KS0 =-28.53. Data for 429 

12 months are shown by the filled circles in Figure 4. 430 

In recent years, the impact of soluble nitrate and nitrite corrosion inhibitors on the mineralogy of ce-431 

ment pastes has been studied [34, 36, 63], and it has been demonstrated that the AFm phase has the 432 

ability to accommodate NO3
- and NO2

- ions in the interlayer position. Solubility data along with ther-433 

modynamic parameters for the nitrate AFm (NO3-AFm) and nitrite AFm (NO2-AFm) published by Balo-434 

nis et al. [34, 35] are shown in Figure 4. Similarly, as in the case of Cl-AFt, an attempted synthesis of 435 

NO3- or NO2-AFt at room temperature was not successful [34].  436 

 437 

2.4 Iron containing hydrates  438 

The main source of iron in cements is 5-15% ferrite clinker in Portland cements and slag in blended 439 

cements. In synthetic systems containing only water, C2F, calcium sulfate, calcium carbonate or silica, 440 

different Fe-containing phases like ettringite, monosulfate, monocarbonate, siliceous hydrogarnet can 441 

precipitate, as well as form solid solutions with their Al-containing analogues [8-10, 21].  442 

The stability of Fe-containing phases generally is only moderately affected by temperature, as shown 443 

in Figure 5. At ambient temperature, Fe-ettringite (C6Fs3H32), Fe-monosulfate (C4FsH12), Fe-444 

monocarbonate (C4FcH12), Fe-Friedel`s salt (C4FCl2H10), and Fe-siliceous hydrogarnet (C3FS0.95H4.1, 445 

C3FS1.52H2.96) are stable, while Fe-katoite (C3FH6) and Fe-hemicarbonate (C4Fc0.5H10) are metastable [8-446 

10, 21, 37]. Attempts to synthesize Fe-strätlingite (C2FSH8) failed, as only portlandite, C-S-H and iron 447 

hydroxide formed, indicating the instability of Fe-strätlingite at ambient conditions. C4FsH12, C4FcH12, 448 

and C4FCl2H10 are also stable at 50° but not at 80°C, while Fe-siliceous hydrogarnet is stable at up to 449 

110°C. The limited stability field of the Fe-containing AFm and AFt hydrates is related to the very high 450 

stability of goethite (FeOOH) and hematite (Fe2O3), which form at 50°C within several months and at 451 

80°C within days [9]. Although hematite and portlandite would be more stable than the Fe-katoite, AFt 452 

and AFm phases between 0 and 100°C, the formation of goethite and hematite at ambient tempera-453 

tures is very slow, such that Fe-containing siliceous hydrogarnet, AFt and AFm phases can be synthe-454 

sized instead. Figure 3 shows the solubility products of Fe-containing phases calculated based on the 455 

measured composition of the liquid phase at 20, 50 and 80°C; those data were used to derive the 456 

thermodynamic data for standard conditions (25°C, 1 atm) given in Table 1. The formation of solid so-457 

lutions between Al and Fe-containing endmembers has been observed for ettringite, siliceous hy-458 

drogarnet, monosulfate, and Friedel’s salt, while no solid solution formed between the rhombohedral 459 

Fe-monocarbonate with the triclinic Al-monocarbonate due to the structural differences [8-10, 21, 37].  460 

 461 
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 462 

Figure 5: Solubility product (KS0) of Fe-containing hydrogarnet and AFm-phases at different tempera-463 

tures, referring to reactions using Ca2+, Fe(OH)4
-, SiO(OH)3

-, SO4
2-, CO3

2-, Cl-, OH- and H2O as indicated 464 

in Table 2. Data from Dilnesa and co-workers [8-10, 37]. 465 

 466 

While different Fe-containing hydrates could be synthesized, only Fe-siliceous hydrogarnet is expected 467 

to occur in hydrated cements. The solubility product of Fe-siliceous hydrogarnet (given in Table 1) is 5 468 

to 7 log units lower than that of Al-siliceous hydrogarnet indicating a high stabilization of Fe-siliceous 469 

hydrogarnet, while the solubility products of the Fe-containing hydrates are comparable or only 470 

somewhat more stable than their Al-containing analogues. In fact, in hydrated PC, Fe(III) precipitates as 471 

iron hydroxide during the first hours and as siliceous hydrogarnet (C3(A,F)S0.84H4.32) after 1 day and 472 

longer [64-66]. The data for the C3FS0.84H4.32 and for the mixed Al- and Fe-containing C3A0.5F0.5S0.84H4.32 473 

determined by Dilnesa et al. [9] are included in Cemdata18, but not the data for the Al-based 474 

C3AS0.84H4.32 due to its formation being kinetically hindered at ambient conditions [9]. 475 

 476 

2.5 Effect of relative humidity  477 

Cement hydrates are known to show varying water content as functions of temperature and relative 478 

humidity (RH). Some of these hydrates are crystalline phases with layered structure such as the AFm-479 

phases or ettringite-type structures. The AFm and AFt phases have different hydration states (i.e. vary-480 

ing molar water content) depending on the exposure conditions, which can impact the volume stabil-481 

ity, porosity and density of cement paste. The molar volume of some AFm phases can decrease by as 482 

much as 20% during drying [31], which may strongly influence the porosity and performance of some 483 

cementitious systems. 484 
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In gel-like phases such as C-S-H, water can be present within the intrinsic gel porosity, as well as in its 485 

interlayer. Unfortunately, until now there was no thermodynamic model capable of assessing this vary-486 

ing water content. 487 

The crystalline AFm phases have a layered structure and are known for their varying water content in 488 

the interlayer, which can be of two types. Firstly, the “space filling”, loosely integrated zeolitic water 489 

molecules, which are easily removed from the structure upon increase of temperature or at an initial 490 

small decrease of RH and have thermodynamic properties close to liquid water. Secondly, the “struc-491 

tural water” molecules, which are strongly bound to calcium cations of the main layer and can only be 492 

removed at low water activities and/or high temperatures, typically accompanied by high enthalpies 493 

values. Recently, the thermodynamic properties of the different hydration states of the most important 494 

AFm phases were determined by Baquerizo et al. [31, 32] and are listed in Table 1. A summary of the 495 

volume stability of AFm phases at 25°C is shown in Figure 6.  496 

 497 

 498 

Figure 6: Volume changes of the AFm phases studied as function of RH at 25°C. 100% volume corre-499 

sponds to the higher hydration state of each phase. 500 

 501 

Ettringite, C6As3H32, is also known to have varying water content. This hydrate is a common phase oc-502 

curring during the hydration of PC. It is also the main hydration product in calcium sulfoaluminate ce-503 

ments and calcium aluminate cement blended with gypsum. Understanding the stability of ettringite 504 

during hydration and under different drying conditions is of great importance to assess the perfor-505 

mance of systems containing large amounts of this phase. In general, ettringite contains 32 H2O mole-506 

cules per formula unit: 30 fixed in the columns and 2 H2O of zeolitic water loosely bound in the chan-507 

nels. Removal of the two inter-channel water molecules takes place with decreasing relative humidity 508 

(RH) without any significant change of the structure. Nevertheless, a series of structural changes are 509 

observed when the water content is below 30 H2O, resulting in an amorphous phase commonly known 510 

as metaettringite. The thermodynamic properties of crystalline ettringite, having 32 and 30 H2O, and 511 

amorphous ettringite (or metaettringite) having 13H2O and 9H2O were recently derived by Baquerizo 512 

et al. [30] and are listed in Table 1. Something interesting to notice is that decomposition and refor-513 
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mation of ettringite takes place reversibly but with a marked hysteresis, which makes the estimation of 514 

thermodynamic properties difficult. The values presented in Table 1 corresponds to those derived us-515 

ing the desorption equilibrium properties. Figure 7 shows the stability of ettringite at 25°, presenting 516 

three different zones:  517 

- The zone of decomposition, which has to be reached in order to decompose ettringite into 518 

metaettringite. 519 

- The hysteresis loop, where crystalline ettringite will not undergo decomposition unless the zone of 520 

decomposition is reached and amorphous metaettringite will not reform unless the zone of refor-521 

mation is reached. 522 

- The zone of reformation, which has to be reached in order to be convert metaettringite back to 523 

crystalline ettringite. 524 

 525 

 526 

Figure 7: Stability of ettringite as a function of relative humidity and temperature. 527 

 528 

2.6 Mg-Al layered double hydroxide (hydrotalcite-like phase) 529 

Mg-Al layered double hydroxide (LDH) type phases are structurally similar to hydrotalcite and typically 530 

occur as secondary reaction products in hydrated Portland cements [67] and in alkali-activated granu-531 

lated blast furnace slag (GBFS) [68, 69]. In hydrated or alkali-activated cementitious materials free from 532 

carbonation, Mg-Al LDH phases normally exhibit poor long-range structural order and are thought to 533 

significantly occur along the solid solution series Mg(1-x)Alx(OH)(2+x)(H2O)4, where 0.2 ≤ x ≤ 0.33 [70, 71] 534 

due to the deficiency of CO2 in the system. Mg-Al LDH formation is thus often difficult to observe by 535 

conventional X-ray diffraction, particularly at low MgO content.   536 

Few solubility data for hydroxide containing hydrotalcite like Mg-Al LDH phases have been measured; 537 

the data at 25°C are summarised in Figure 8A and B. The samples studied by Bennet et al. [72] were 538 

synthesised for 2 days at 80°C, dried, and then re-dispersed in water for 4 weeks at 25°C. This proce-539 
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dure resulted in a solubility product of 10-47 for M4AH10. Further re-dispersion steps lowered the solu-540 

bility product of M4AH10 to 10-56. This lower solubility product of 10-56 for M4AH10 was selected for use 541 

in Cemdata07 [1, 29] (see Figure 8A and Figure 9), and by Bennet et al. [72].  542 

 543 

 544 

Figure 8: Solubility of A) M4AH10 (from Cemdata07+18) and B) of the MgAl-OH-LDH solid solution 545 

compared to the solubility of microcrystalline Al(OH)3 and brucite (dotted lines) and to the experi-546 

mental data (Mg: circles, Al: triangles) determined by Bennet et al. [72] and Gao and Li [73]. 547 

 548 

Figure 9: Measured and calculated solubility products of M4AH10 (reactions refer to Mg2+, Al(OH)4
-, OH- 549 

and H2O as indicated in Table 3) at different temperatures. Adapted from Myers et al. [74]. 550 

 551 

Based on the solubility data of Gao and Li [73] for samples precipitated from oversaturated solutions 552 

(equilibration time 2 days), solubility data for hydrotalcite like Mg-Al LDH phases intercalated with OH- 553 

(MgAl-OH-LDH) were recently recompiled and recalculated [74], as shown in Figure 8B) and Figure 9. 554 

Solubility products for the end members of MgAl-OH-LDH solid solution model were defined using 555 

the available data [72, 73] and guided using experimental observations in alkali activated slag cements 556 

with the high stability of MgAl-OH-LDH and absence of brucite in uncarbonated alkali-activated slag 557 

cements is widely documented and provides a reliable proxy for this task. An ideal (simple mixing) sol-558 
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id solution thermodynamic model (MA-OH-LDH_ss) was provisionally defined using these data for 559 

Mg/Al molar ratios between 2 and 4. The use of independent experimental observations to derive the 560 

solid solution model is important because solubility products derived from the available solubility data 561 

are scattered by up to ~10 log10 units at 25°C, possibly due to the varied equilibration times used (2 562 

days [73] to 1 month [72]). We recommend using MgAl-OH-LDH_ss for alkali activated materials. 563 

 564 

Usage of the MgAl-OH-LDH_ss model (describing hydrotalcite-like phases with variable Mg/Al ratio, 565 

and recommended for use in alkali activated material systems) does not lead to hydrotalcite formation 566 

under typical PC conditions due to the low aluminium concentrations in the pore solution [29] of PCs, 567 

for which brucite would be calculated to precipitate instead. As the formation of hydrotalcite like 568 

phases is reported in well hydrated PCs with dolomite [75], the use of a single phase, M4AH10, with a 569 

lower solubility product (see Table 3, Figure 9) derived from the long-term experiments in [72] only, is 570 

recommended for hydrated PC. The necessity to use presently two different datasets and the large dif-571 

ferences in the available data indicates that the solubility data selected for M4AH10 and for MgAl-OH-572 

LDH_ss are tentative and may require updating as more data become available. Therefore, we believe 573 

that additional solubility measurements for Mg-Al LDH phases are needed.  574 

 575 

Table 3: Standard thermodynamic properties at 25°C and 1 atm for hydrotalcite-like phases (provided 576 

in separate modules of Cemdata18 database). The data are consistent with the GEMS version of the 577 

PSI/Nagra 12/07 TDB [22, 23] and the data detailed in Table 1 and Table 4. 578 

 ∆fG° ∆fH° S°  a0  a1 a2 a3 V° Ref 579 

 [kJ/mol] [kJ/mol]  [J/K/mol]  [J/K/mol] [J/mol/K2] [J K/mol] [J/K0.5/mol] [cm3/mol] 580 

 581 
M4AH10

*
 -6394.6  -7196  549 -364 4.21 3.75·106 629 220  [1, 29] 582 

 583 
MgAl-OH-LDH (ideal ternary solid solution)** 584 
M4AH10 -6358.5 -7160.2 548.9 547.6 - - - 219.1 [74] 585 
M6AH12 -8022.9 -9006.7 675.2 803.1 - - - 305.4 [74] 586 
M8AH14 -9687.4 -10853.3 801.5 957.7 - - - 392.4 [74] 587 

Mineral log KS0 Dissolution reactions used to calculate solubility products.  588 

M4AH10
* -56.02*  Mg4Al2(OH)14·3H2O   4Mg2+ + 2Al(OH)4

- + 6OH- + 3H2O 589 
 590 
M4AH10

** -49.7 Mg4Al2(OH)14·3H2O   4Mg2+ + 2Al(OH)4
- + 6OH- + 3H2O 591 

M6AH12
** -72.0 Mg6Al2(OH)18·3H2O   6Mg2+ + 2Al(OH)4

- + 10OH- + 3H2O 592 
M8AH14

** -94.3 Mg8Al2(OH)22·3H2O   8Mg2+ + 2Al(OH)4
- + 14OH- + 3H2O 593 

a0, a1, a2, a3 are the empirical coefficients of the heat capacity function: C°p= a0 +a1T+a2T -2 +a3T -0.5; * tentative value; recom-594 
mended for PC based systems. ** tentative values; recommended for alkali activated materials. 595 
 596 

2.7 C-S-H solid solution models  597 

The C-S-H gel-like phase is the major hydrate in PC and blended PC pastes. C-S-H is also the main 598 

“sorbent” of alkali, alkali-earth, and hazardous cations (Sr2+, UO2
2+, Zn2+, etc.) in hydrated cements used 599 

as waste matrices, including engineered barriers in nuclear waste repositories.  600 
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C-S-H phases have a variable composition that depends on the prevailing Ca/Si ratio in the system 601 

that can change by pozzolanic reaction, leaching caused by the ingress of water and/or chemical at-602 

tack, such as carbonation. There are differences between properties of C-S-H samples prepared by (a) 603 

C3S or C2S hydration; (b) co-precipitation (double-decomposition) methods [76]. C-S-H has a ‘defect-604 

tobermorite’ structure with a mean silicate chain length depending on the Ca/Si ratio, pH and the 605 

presence of aluminum [77]. It has variable “non-gel” water content (i.e. structural water and water pre-606 

sent in the interlayer [78, 79]), also depending on the Ca/Si ratio and the synthesis route, variable par-607 

ticle morphology, stacking, and “gel” water content, i.e. water present between C-S-H particles. Many 608 

C-S-H experimental solubility data sets available to date have been critically analyzed [80], including C-609 

S-H type phases with variable aluminum and alkali contents [76, 81-84].  610 

C-S-H solubility can be reliably modelled using either solid solution models [11, 80, 85] or (to a limited 611 

extent) using a surface complexation approach [86, 87]. Quantitative knowledge of C-S-H solubility is 612 

needed in essentially all studies of cement hydration and of waste-cement interactions, which explains 613 

why measuring and modeling the C-S-H solubility and water content is a major topic in cement chem-614 

istry [76].  615 

In Table 4, five alternative C-S-H solid solution models are represented, in part for backward compati-616 

bility with previous versions of Cemdata (Cemdata07 and Cemdata14); they are provided in the 617 

Cemdata18 database. Here we provide a brief overview of those models with some recommendations 618 

for their use.   619 

 620 

Table 4: Solid solution models of C-S-H (provided in separate modules of Cemdata18 database). 621 

Phase, ∆fG° ∆fH° S°  a0  a1 a2 V° Ref 622 

End member [kJ/mol] [kJ/mol]  [J/K/mol]  [J/K/mol] [J/mol/K2] [J K/mol] [cm3/mol] 623 

 624 
C-S-H (CSH-II solid solution),  625 
Tob: C0.83SH1.3  -1744.36  -1916  80  85  0.160       59  [1] 626 
Jen: C1.67SH2.1  -2480.81  -2723  140  210  0.120  -3.07·106  78  [1] 627 
 628 
 629 
C-S-H-K-N (ECSH-1 solid solution)  630 
TobCa-1: C0.83SH1.83  -1863.62 -2059.5 114.6 170.4    68 [85] 631 
SH: SH (SiO2H2O)  -1085.45 -1188.6 111.3 119.8    34 [85] 632 
NaSH-1: N0.5S0.2H0.45  -433.57 -480.4 41.2 37.9    10.5 [88]  633 
KSH-1: K0.5S0.2H0.45  -443.35 -490.0 48.4 40.6    12.4 [88] 634 
SrSH-1: SrSH2  -2020.89 -2231.6 141.9 174.8    64 [88] 635 
  (-2017.47b) (-2228b)  636 
 637 
C-S-H-K-N (ECSH-2 solid solution)  638 
TobCa-2: C0.83SH1.83  -1863.62 -2059.5 114.6 170.4    68 [85] 639 
JenCa: CS0.6H1.1  -1569.05 -1741.6 73.0 114.5    36 [85] 640 
NaSH-2: N0.5S0.2H0.45  -430.72 -477.6 41.2 37.9    10.5 [88]  641 
KSH-2: K0.5S0.2H0.45  -440.49 -487.2 48.4 40.6    12.4 [88] 642 
SrSH-2: SrSH2    -2019.75 -2230.5 141.9 174.8    64 [88] 643 
  (-2016.33b) (-2227b)  644 
 645 
 646 
C-S-H (CSHQ solid solution)  647 
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TobH Ca/Si=0.67: C2/3SH1.5 -1668.56  -1841.5  89.9  141.6    55   [11] 648 
TobD Ca/Si =1.25:C5/6S2/3H1.83 -1570.89  -1742.4 121.8  166.9    48    [11] 649 
JenH  Ca/Si =1.33: C1.33SH2.17 -2273.99  -2506.3  142.5 207.9     76    [11] 650 
JenD Ca/Si=2.25: C1.5S0.67H2.5 -2169.56  -2400.7  173.4 232.8     81    [11] 651 
NaSH: N0.5S0.2H0.45  -431.20 -478.0 41.2 37.9    10.5 [88, 89] 652 
KSH: K0.5S0.2H0.45

  -440.80 -489.6 48.4 40.6    12.4 [88, 89] 653 
 654 
 655 
C-S-H (CSH3T solid solution)  656 
TobH Ca/Si=0.67: C1S3/2H5/2 -2561.53 -2832.97 152.8 231.2    85 [11] 657 
T5C  Ca/Si=1.0: C5/4S5/4H5/2 -2518.66 -2782.03 159.9 234.1    79 [11] 658 
T2C  Ca/Si=1.5: C3/2S1H5/2 -2467.08 -2722.40 167.0 237.0    81 [11] 659 
 660 
 661 
C-(N-)A-S-H (CNASH solid solution) 662 
TobH c: C1S3/2H5/2  -2560.00 -2831.4 152.8 231.2 - - - 85.0 [90] 663 
INFCA: C1A5/32S38/32H53/32 -2342.90 -2551.3 154.5 180.9 - - - 59.3 [90] 664 
INFCN: C1N5/16S3/2H19/16 -2452.46 -2642.0 185.6 183.7 - - - 71.1 [90] 665 
INFCNA: C1A5/32N11/32S38/32H42/32 -2474.28 -2666.7 198.4 179.7 - - - 69.3 [90] 666 
T5C c: C5/4S5/4H5/2  -2516.90 -2780.3 159.9 234.1 - - - 79.3 [90] 667 
5CA: C5/4A1/8S1H13/8  -2292.82 -2491.3 163.1 177.1 - - - 57.3 [90] 668 
5CNA: C5/4N1/4A1/8S1H11/8 -2381.81 -2568.7 195.0 176.2 - - - 64.5 [90] 669 
T2C c:: C3/2S1H5/2  -2465.40 -2720.7 167.0 237.0 - - - 80.6 [90] 670 
 671 

a0, a1, a2, are the empirical coefficients of the heat capacity equation: C°p= a0 +a1T+a2T-2; no value = 0. 672 
a Only CSH-II solid solution included in Cemdata’07.03 database. b for the ACW conditions. c Thermodynamic 673 
properties were slightly modified relative to the T2C, T5C, and TobH end members of the downscaled CSH3T 674 
thermodynamic model [11]. 675 

 676 

CSH-II model. This simple ideal C-S-H solid solution model [85] has been used for many years, and 677 

was included (with a modified stability to better describe the changes in the calcium concentrations 678 

with pH and less water to correspond to the composition of C-S-H present in cements) into Cemda-679 

ta07 database [1, 29]. The original model [85] consisted of two binary ideal solutions CSH-I and CSH-II. 680 

CSH-I used end-members of amorphous silica (SH; SiO2) and a tobermorite-like C-S-H gel phase (Tob-681 

I; (Ca(OH)2)2(SiO2)2.4·2H2O). CSH-II used end-members of tobermorite-like (Tob-II; 682 

(Ca(OH)2)0.8333SiO2:0.8333·H2O) and jennite-like (Jen; (Ca(OH)2)1.6666SiO2·H2O) C-S-H gel phases. The CSH-II 683 

phase co-exists with CH (portlandite) at Ca/Si ratios above 1.5 to 1.7. The CSH-I solid solution has been 684 

shown to be unrealistic ([80] and references therein) and amorphous SiO2 co-exists with C-S-H gel of 685 

Ca/Si ratios = 0.4-0.8. The water content in this C-S-H II is lower than in the other models discussed 686 

below, but corresponds well to the water present in the interlayer of C-S-H as measured by 1H-NMR 687 

[78, 79]. In Cemdata18, we provide the CSH-II solid solution model only, covering the range of Ca/Si 688 

ratios from 0.83 to 1.67, for backward compatibility with the Cemdata07 database and as an alternative 689 

to the newer models. 690 

 691 

ECSH-1 and ECSH-2 models extend both CSH-I and CSH-II models with Na-, K- and Sr- containing 692 

end members. Aimed at pragmatic description of uptake of minor cations, these provisional ideal solid 693 

solution models [88] were constructed with help of the statistical dual-thermodynamic method [91] 694 

based on GEM-Selektor calculations. With this method, one can retrieve both the unknown stoichiom-695 



20 
 

etry and the standard molar Gibbs energy ∆fG°298 of ideal solid solution end members from the exper-696 

imental bulk compositions of the aqueous solution and co-existing solid solution. In total, 13 possible 697 

end member stoichiometries with the general formula 698 

[(Ca(OH)2)nCa(Sr(OH)2)nSr(KOH)nK(NaOH)nNaSiO2H2O]nSi were considered for these models. To develop 699 

these models, the nCa, nSr, … coefficients were adjusted in order to minimize the standard deviations 700 

of estimated Go
298 values for model end members in trial GEM calculations for a number of experi-701 

mental data points. These trial GEM calculations employed: (1) the Nagra-PSI database [24]; (2) many 702 

experimental data points at different Ca/Si, Sr/Si, Na/Si, K/Si ratios; and (3) varying stoichiometry coef-703 

ficients of solid solution end members within the ranges of 0.1< nSi< 2, 0< nCa< 1.6, 0< nSr< 2, 0<nK 704 

<2, and 0<nNa<2.  705 

Followed by ‘forward GEM modelling’ of Sr uptake data in pure water and in artificial cement water 706 

(ACW), this procedure resulted in ideal ECSH-II and ECSH-I solid solution models that provided the op-707 

timal description of data (over 96 experiments published in [92] and additional in-house Sr uptake da-708 

ta on C-S-H in water and in ACW). ∆fG°298 values for Na- and K-containing end members were also fi-709 

ne-tuned using literature data [81] on Na and K uptake isotherms in C-S-H (Figure 10). The ECSH-1 710 

and ECSH-2 models can realistically describe the uptake of cations and the decrease of (maximum) 711 

Ca/Si ratios in equilibrium with portlandite upon increasing alkali concentration in aqueous solution. 712 

However, it was not possible to use the same ∆fG°298 of SrSH end member to model isotherms of Sr 713 

uptake in C-S-H prepared in water and in the artificial cement pore water (ACW with pH 13.3 at 25 oC, 714 

containing 0.18 M KOH, 0.114 M NaOH and 1.2 mM Ca(OH)2). We believe that the ∆fG°298(SrSH) differ-715 

ence (up to 3.4 kJ mol-1) can probably be explained by different silica polymerization and cation ex-716 

change capacity of C-S-H due to the presence of alkali. We anticipate that ECSH-1 and ECSH-2 will be 717 

replaced by more accurate C-S-H-K-Na models in the near future. 718 

With no known thermodynamic properties of structural analogues available, the standard entropy and 719 

heat capacity of the ECSH end members were estimated assuming linear dependencies of entropy and 720 

heat capacity effects of reactions on the Ca/Si ratio in C-S-H [11]: 721 

(CaO)x(SiO2)y(H2O)z   =  ySiO2         + xCa(OH)2         + (z-x)H2O   (1) 722 
(C-S-H end member)       =  y(silica)     + x(portlandite)     + (z-x)(water)  723 

  rSo
298  =  y ( 61.054 + 5.357 x/y )      (2a) 724 

 rCpo
298 = y ( 31.881 - 11.905 x/y )      (2b) 725 

Using eqs (2a,b), rSo
298 and rCpo

298 were calculated and rounded off to the nearest whole numbers. 726 

The rHo
298 values were calculated from log10Ko

298 and rSo
298 values together with the So, Cpo, ∆fH° and 727 

∆fG° values at Tr = 298.15 K using the ReacDC module of GEM-Selektor code and thermodynamic 728 

properties of water, portlandite and amorphous silica from the GEMS version of the PSI/Nagra 12/07 729 

TDB [22, 23] and Cemdata18 databases. The resulting thermodynamic properties (Table 4) are ex-730 

pected to suffice for temperatures between 0 and 90 oC within 0.5 pK units uncertainty.  731 
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 732 

 733 

Figure 10: Comparison of sorption isotherms for K or Na calculated using the ECSH-II Aq-SS model 734 

(curves) with the data for K and Na sorption [81] (scattered symbols). Abscissa: log10 moles of added K 735 

or Na per 1 kg H2O; ordinate: log10 molar.  736 

 737 

Next, the So
298, Cpo

298 and values of the SrSH, NaSH and KSH end members of ECSH phases were eval-738 

uated. This was done by taking the properties of their reference calcium hydroxide counterpart C1S1H2 739 

and then either subtracting or adding respective properties of solid portlandite Ca(OH)2, as well as  740 

solid Sr(OH)2, solid NaOH or solid KOH from Wagman et al. [93]. This is equivalent to assuming rSo
298 741 

= 0 and rCpo
298 = 0 for the reactions:  742 

CSH2 + SrH = SrSH2 + CH       (3a) 743 

0.2 CSH2 + 0.5 KOH = (KOH)0.5(SiO2)0.2(H2O)0.2 + 0.2 CH     (3b) 744 

0.2 CSH2 + 0.5 NaOH = (NaOH)0.5(SiO2)0.2(H2O) + 0.2 CH     (3c). 745 

For these calculations, rSo
298, and rCpo

298, So
298, Cpo

298  of the reference compound CSH2 were com-746 

puted using Eqs 1, 2a and 2b. Note that the stoichiometries of the K and Na C-S-H end members de-747 

fined by reactions 3b and 3c correspond to N0.25S0.2H0.45 or K0.25S0.2H0.45 , but not N0.25S0.2H0.3 or 748 

K0.25S0.2H0.3 as defined in Kulik et al. [88]. The respective values for ∆fG°298, and ∆fHo
298 are summarised 749 

in Table 4.  750 

 751 
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CSHQ model [11] was developed in order to address some known shortcomings of earlier CSH-I and 752 

CSH-II models [29, 85], namely insufficient connection to the C-S-H structure and the unrealistic as-753 

sumption of ideal mixing between tobermorite-like and amorphous silica end members. It was based 754 

on structural data supporting the defect-tobermorite model [94-96], represented as a solid solution 755 

model with four different structural sites (sublattices) [11]:  [BTI+2]1:[TU-]2:[CU0]2:[IW0]5. The main as-756 

sumption was that in BTI sites, the incorporation of Ca2+ ion in the interlayer occurs simultaneously 757 

with the removal of a bridging tetrahedron in the silica “dreierketten” chain, and this process is re-758 

versible. Excess calcium can also be incorporated as a Ca(OH)2 moiety, either interstitially in the tober-759 

morite interlayer, or forming domains of jennite-like structure. This was accounted for by an exchange 760 

of a vacancy with Ca(OH)2 in CU sites. The occupation of TU and IW sublattices was fixed as 2CaSiO3.5
- 761 

and 4H2O+vacancy, respectively. This led to four end members with stoichiometries depending on the 762 

assumed Ca2+/H+ ratio in BTI sites.  763 

This solid solution model has a correct built-in dependence of the mean silica chain length (MCL) on 764 

Ca/Si ratios. By downscaling the end-member stoichiometries to Si = 1.0 and adjusting the Go
298 values 765 

of end members, the CSHQ model could be fine-tuned to various C-S-H solubility data sets [11]. In this 766 

Cemdata18 database, two end members for K and Na (similar to those from the ECSH model) were 767 

provisionally added to improve predictions of pH and composition of the PC porewater.  768 

The downscaled ideal CSHQ model (Table 4) provides a reasonable fit to the variety of C-S-H solubility 769 

data in the [Ca]-[Si], [Ca]-C/S and [Si]-Ca/Si spaces as discussed in more detail in [11].  770 

An extension to cover the uptake of alkalis by C-S-H was based on an ideal solid solution model be-771 

tween jennite, tobermorite, [(KOH)2.5SiO2H2O]0.2 and [(NaOH)2.5SiO2H2O]0.2 as proposed by Kulik et al. 772 

[88] and using the thermodynamic data reported in [89]: ∆fG° = -440’800 J/mol and -431’200 J/mol (at 773 

20°C) for [(KOH)2.5SiO2H2O]0.2 and [(NaOH)2.5SiO2H2O]0.2, respectively. 774 

 775 

CSH3T model [11] was aimed at more consistency with the tobermorite-like structure of C-S-H phases 776 

at Ca/Si < 1.5. The evidence of interlayer ordering in tobermorite-like C-S-H with 0.9 < C/S < 1.25 [96] 777 

has led to setting the CU sites always vacant, and to splitting the BTI sublattice into two 778 

([BTI1+]1:[BTI2+]1:[TU-]2: [IW0]4) with substitutions of Si0.5OH+ by HO0.5Ca0.5
+. This yielded a solid solution 779 

model with end members TobH (C2S3H5), T5C (C2.5S2.5H5), T2C (C3S2H5), connected by an ordering reac-780 

tion ½TobH + ½T2C = T5C. The model has a built-in dependence of the mean chain length on the 781 

composition, consistent with measured values [95] for the co-precipitated tobermorite-like C-S-H. The 782 

CSH3T model [11] in its downscaled form (Table 4) can be computed just using a simple ideal mixing 783 

model. The CSH3T model has been later extended with U(VI) end members [97] and with Al and Na 784 

end members [90]. The ideal CSH3T SS model [11] produces quite realistic curves for solubility of the 785 

synthetic C-S-H co-precipitation (double decomposition) data. More accurate C-S-H multi-site solid 786 

solution models are in development. 787 

 788 

CNASH_ss model [90] includes Al and Na and represents an extension of the CSH3T model that was 789 

optimised for alkali activated systems. The calcium (alkali) aluminosilicate hydrate (C-(N-)A-S-H) gel-790 

like phase that precipitates in alkali-activated cements contains significantly less Ca, more Al and alkali 791 



23 
 

and has a more densely packed structure than the C-(A-)S-H which forms in hydrated PC-based mate-792 

rials [98, 99]. However, both phases are based on the same defect-tobermorite structure. In alkali-793 

activated slag cements (an exemplary ‘high-Ca’ alkali-activated material [100]), the C-(N-)A-S-H phase 794 

typically has a Ca/Si ≈ 1 and an Al/Si ≤ 0.25 [90].  795 

Many solubility and chemical composition data for the C-(N-)A-S-H system have been published. 796 

Much of this data was used to develop an ideal solid solution thermodynamic model (CNASH_ss), in-797 

cluding configurational entropy terms, which explicitly includes mixing of Al and Na [90]. The 798 

CNASH_ss model enables Al incorporation into C-(N-)A-S-H gel to be explicitly considered in thermo-799 

dynamic modelling simulations. The CNASH_ss model has been applied to simulate phase assemblag-800 

es in NaOH, sodium silicate, Na2CO3, and Na2SO4-activated slag systems [74, 101]. This model is also 801 

applicable to thermodynamic modelling of PC-based materials; however, it less closely represents the 802 

full body of available solubility data for the C-S-H phase [102] at Ca/Si > ~1.3 than other C-S-H ther-803 

modynamic models, e.g. [11, 80]. CNASH_ss closely represents the full set of solubility data for the C-804 

(N-)A-S-H gel phase down to Ca/Si = 0.67. Therefore, we recommend using CNASH_ss for alkali acti-805 

vated systems rather than hydrated PC systems, where we recommend the use of CSHQ or C-S-H-II. 806 

Additional solubility data for C-(N-)A-S-H gel not used to validate CNASH_ss were recently published, 807 

including for C-(N-)A-S-H gels at synthesis temperatures of 7°C, 50°C and 80°C [103, 104] and using K 808 

rather than Na [84, 105]. Future refinement to the CNASH_ss thermodynamic model should include 809 

these data and formally extend the model to different temperatures and alkali type.  810 

During the last 20 years, ideal solid solution models of C-S-H have evolved starting from simple ideal 811 

solid solutions using full end-member mixing up to recent truly multi-site mixing models consistent 812 

with both solubility data and structural/spectroscopic data. Because end members in multi-site solid 813 

solutions are constructed of moieties substituting each other on different sublattices, such models 814 

have the best potential for: (1) extension by adding moieties for other elements of interest (e.g. K, Na, 815 

Al, U, Sr) in their respective sites; (2) generating all possible end members; and (3) parameterizing end 816 

members based on available solubility, element uptake, and spectroscopic data (e.g. using the 817 

GEMSFITS code [106]) and are the subjects of ongoing research. 818 

For the calcium silicate hydrate complexes, CaH3SiO4
+ (CaHSiO3

+ +2H2O) and CaH2SiO4
0 (CaSiO3

0 819 

+2H2O), the reported complex formation data show a significant scatter. In particular, complex 820 

formation constants for CaH2SiO4
0 vary by more than one log unit. While the PSI/Nagra TDB [22, 23] 821 

reports a complex formation constant of 104.6 for the reaction Ca2+ + SiO3
2- CaSiO3

0 (see Table 2), 822 

which has a large effect on the silicon concentrations in presence of C-S-H at Ca/Si > 1 [80], no such 823 

constant is defined in the PHREEQC database [18]. Walker et al. [80] recommended to use a constant 824 

of 104.0, making the complex less important, while recently an even lower complex formation constant 825 

of 102.9 has been derived  based on titration experiments [107]. This large scatter of data results in very 826 

diverging assessment of the importance of the CaSiO3
0 complex at Ca/Si >1 and has a significant 827 

impact on the C-S-H solubility as this complex accounts for about 90% of aqueous dissolved silicon in 828 

equilibrium with both C-S-H and portlandite. Dedicated investigations not only of calcium silicate 829 

hydrate complexes but also of other possible complexes between aluminum, calcium and silicate at 830 

high pH values are urgently needed.  831 
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 832 

2.8 Magnesium silicate hydrates  833 

The formation of magnesium silicates hydrate (M-S-H) has been observed at the interfacial zone of 834 

cement paste with clays [67, 108, 109] and/or as secondary products from the degradation of cement 835 

pastes by groundwater or seawater [110-112]. The combination of leaching and carbonation of the 836 

cement paste decreases pH at the surface of the cement, decalcifies C-S-H and leads the formation of 837 

a Mg-enriched phase, M-S-H. M-S-H phases are poorly ordered but have a layered structure with 838 

tetrahedral silica arranged in sheets similar to clay minerals, have variable Mg/Si from ≈0.8 to Mg/Si 839 

≈1.2 and are stable at pH values between 7.5 to 11.5 [40, 113-115]. Given the difference in structure 840 

and pH domains, most studies [114-117] observed the precipitation of distinct C-S-H and M-S-H 841 

phases and not of a mixed magnesium calcium silicate hydrate phase. Solubility measurements [40, 842 

113, 118] indicated an only slightly higher solubility of the poorly ordered M-S-H in comparison to 843 

crystalline magnesium-silicates such as talc, antigorite or chrysotile as shown in Figure 11. The ideal 844 

solid solution model for M-S-H published by Nied et al. [40] has been selected for the present version 845 

of the database. As several groups [113, 114, 118] are currently working on thermodynamic data for 846 

M-S-H, we expect that more sophisticated models will be published in the coming years. 847 

 848 

Figure 11: Evolution of the solubility product (KS0 ) of magnesium silicate hydrates at room temperature 849 

as a function of the total Mg/Si; referring to reactions using Mg2+, SiO2 and H2O as indicated in Table 850 

2. Adapted from [118]. 851 

 852 

2.9 Zeolites 853 

Interactions of highly alkaline solutions in hydrated PC systems with service environments will likely 854 

result in the partial dissolution of aluminosilicate minerals from adjacent rocks and the formation of 855 

secondary zeolite minerals [119] in the context of deep underground nuclear waste repositories. 856 



25 
 

Zeolite formation also occurs in alkali activated cement systems. These zeolites are often related to the 857 

poorly crystalline N-A-S-H (sodium-aluminium-silicate-hydrate) and K-A-S-H (potassium-aluminium-858 

silicate-hydrate) gels that form in these systems [74, 103]; the type of gel formed depends on the 859 

presence of Na+ or K+, cation concentrations, the relative degree of saturation of the liquid phase with 860 

respect to silica, pH and temperature [120]. Several papers in recent years estimated solubility data for 861 

different zeolites, based mainly on heat capacity and enthalpy measurements [47, 74, 121]. This may 862 

lead to considerable bias in the estimated solubility data in the range of several log units due to 863 

uncertainties associated with the measurements of enthalpy data. The determination of solubility data 864 

for zeolites has been hindered by variability in cation composition (Ca, Na, K), Al/Si ratios, H2O 865 

contents and atomic structure, and also their slow reaction kinetics.  866 

In 2017, two independent studies [41, 103] reported very similar solubility products for zeolite Y and X 867 

(or for N-A-S-H gel with Al/Si = 0.5 and Al/Si = 0.8) based on experimental data. The data for zeolite 868 

X(Na), zeolite Y(Na) and chabazite [41] make it possible to predict zeolite formation in sodium 869 

activated cements; data for potassium-based zeolites are still missing in the Cemdata18 database. Also 870 

data for natrolite and zeolite P(Ca) have been included [41]. In experiments with high pH values their 871 

formation was kinetically hindered (although natrolite and zeolite P(Ca) were more stable than zeolite 872 

X(Na), zeolite Y(Na) and chabazite). Thus we recommend that natrolite and zeolite P(Ca) should be 873 

considered in modelling the interface between cement and adjacent rocks. However, their formation 874 

may be supressed in models for alkali activated systems, where zeolite X(Na), zeolite Y(Na) and 875 

chabazite or their amorphous or nanocrystalline precursors are formed [122].  876 

 877 

3 Comparison Cemdata07 with Cemdata18  878 

The updates since the first cemdata version, cemdata07 (published in 2008), are significant. In 879 

particular, the distribution of iron and aluminium, the volume and Ca/Si in C-S-H as well as the alkali 880 

concentrations in the pore solution in PC can significantly affect thermodynamic modelling results. To 881 

illustrate these differences, the effect of limestone on the same PC was calculated with Cemdata07 and 882 

Cemdata18 and compared below. The effect of relative humidity on calculated hydrates is used below 883 

as a second example. These comparisons concentrate on PC, as compiled specific data for alkali 884 

activated materials are only now available (in this paper).   885 

3.1 Effect of limestone on solid and liquid phase composition 886 

The influence of limestone on cement hydration has been widely studied and was the subject of 887 

several publications by the authors [2, 20, 123]. Experimental investigations showed that the presence 888 

of calcium carbonate prevents the destabilisation of ettringite to monosulfate at long hydrations times 889 

and stabilises monocarbonate together with ettringite (see e.g. [123-125] and Figure 12). 890 

  891 
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 892 
 893 

Figure 12: Experimentally observed phase assemblage in a PC without additional limestone (PC) and 894 

with 4 wt.% of limestone (PC4); reproduced from [123]. 895 

 896 

Also thermodynamic modelling [2, 20, 123] (mainly using the Cemdata2007 database) showed that the 897 

presence of small amounts of limestone significantly impacted the mineralogy of hydrated cements. In 898 

the absence of any limestone no ettringite but only monosulfate as well as of a small amount of 899 

katoite (C3(A,F)H6) was predicted as shown in Figure 13A. The presence of a small amount of limestone 900 

was calculated to stabilise hemicarbonate and at higher dosages monocarbonate plus ettringite, 901 

resulting in an increase of the total volume. The higher volume in the presence of a small amount of 902 

limestone due to the stabilization of ettringite has been found to have a positive effect on the 903 

mechanical properties of PC and blended cements [20, 124].  904 

The stability of siliceous hydrogarnet was a matter of debate during the development of Cemdata07 905 

and in most calculations with Cemdata07 the formation of siliceous hydrogarnet C3AS0.8H4.4 had been 906 

suppressed assuming kinetic hindrance. Based on the data compiled in Cemdata07, which originated 907 

from measurements from [7, 72, 126], ettringite and siliceous hydrogarnet were calculated to be 908 

significantly more stable than monosulfate, hemi- or monocarboaluminate thus theoretically 909 

preventing their presence. Since monosulfate, hemi- and monocarboaluminate are experimentally 910 

observed in hydrated PC, it was assumed that this was due to a kinetic hindrance in the formation of 911 

siliceous hydrogarnet and that possibly a later conversion of hemi- and monocarboaluminate to 912 

siliceous hydrogarnet could occur.  913 

 914 

The new data for (C3A0.5F0.5S0.84H4.32) by Dilnesa et al. [9], included in Cemdata18, suggest that mixed 915 

Al- and Fe-containing siliceous hydrogarnet can coexist with monosulfate, hemi- and 916 

monocarboaluminate at ambient conditions, which is in better agreement with the observed 917 
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experimental data presented in Figure 12 and elsewhere [123-125]. Figure 13B displays the predicted 918 

phase assemblage of a hydrated PC with limestone using Cemdata18 as given in Table 1- Table 4; em-919 

ploying CSHQ and M4AH10. The formation of hemi- and monocarboaluminate accompanied by a stabi-920 

lisation of ettringite instead of monosulfoaluminate was correctly predicted by both datasets. As 921 

shown in Figure 13 the biggest difference between the two datasets is the prediction of a katoite-type 922 

siliceous hydrogarnet phase (C3A0.5F0.5S0.84H4.32), modelled as solid solution with a varying alumina and 923 

iron by using Cemdata18, together with hemi- and monocarboaluminate and ettringite throughout the 924 

modelled composition range independently of the CaCO3 content.  925 

 926 
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 927 

Figure 13: Comparison of calculated solid phase assemblage using A) Cemdata07 and B) Cemdata18 928 

assuming complete hydration of PC using the composition reported in [123].  929 

 930 

The consideration of the siliceous hydrogarnet solid solution in Cemdata18 led to a quite significant 931 

redistribution of alumina and iron within the phase assemblage. Whereas with Cemdata07 around 70% 932 

of the available alumina was bound in AFm phases (see Figure 14A) the predictions based on Cemda-933 

ta18 suggest that only about 25% of alumina is bound in AFm phases and ~30% in the hydrogarnet 934 

phase (Figure 14B). For iron, the difference is even more drastic. The predictions with Cemdata18 sug-935 

gest that close to 100% of the iron is bound by the siliceous hydrogarnet solid solution (Figure 14D) 936 

which is also in agreement with experimental observations [64-66], where predominantly the formation 937 

of mixed aluminum and iron containing hydrogarnet phases in close proximity to the original ferrite 938 

phases was observed in hydrated cements.  939 
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940 

 941 

Figure 14: Effect of the amount of limestone on the phase assemblage and the distribution of 942 

aluminium and iron in hydrated PC calculated using Cemdata07 (A, C) and Cemdata18 (B, D). 943 

 944 

The binding of alkalis in C-S-H lowers the alkali and hydroxide concentrations [81, 84, 88] in the pore 945 

solution of hydrated PC and thus the pH values from above 14 to ~13 to 13.5 [1, 29, 123, 127]. The 946 

disregard of alkali binding by C-S-H would result in very high predicted pH values of 14 and above, 947 

which does not agree with measurements of the pore solution composition [5, 29]. As in 2007 no 948 

thermodynamic models to describe the uptake of alkali in C-S-H were available, distribution 949 

coefficients (Kd values) were used together with Cemdata07 in most calculations of hydrated cements 950 

as described in details e.g. in [1, 29, 123]. The use of distribution coefficient allowed predicting the 951 

alkali concentrations in PC relatively well as shown in Figure 15A, but the approach was not adequate 952 

to predict alkali uptake in low Ca/Si C-S-H present in blended cements. Kd values do not account for 953 

competitive sorption on specific sites as would be expected for the C-S-H gel, and also tend to be 954 

experiment-specific and so cannot generally be applied to other systems under different conditions. In 955 

the Cemdata18, the uptake of alkalis by C-S-H is modelled by introducing additional Na- and K-956 

endmembers ([(NaOH)2.5SiO2H2O]0.2 and [(KOH)2.5SiO2H2O]0.2) in the CSHQ model, as described above 957 

(section 2.7). The introduction of these provisional data simplify the modelling, as no additional Kd 958 

values have to be introduced in the models, and allows the calculation of alkali uptake over the whole 959 

range of Ca/Si ratios, although the agreement between measured and calculated alkali concentrations 960 

is only satisfactorily, as shown in Figure 15B. Due to the lack of appropriate models for sodium and po-961 
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tassium uptake in C-S-H valid over the complete range of Ca/Si, the modelling of alkali and hydroxide 962 

concentrations in the pore solution remains a challenge. 963 

The trends in the concentrations of calcium, sulfate, silicon and aluminium are generally correctly 964 

reproduced by both models (see e.g. [1, 29, 123, 127], Figure 15) although there are differences be-965 

tween measured and calculated values, in particular for Ca and Al for Cemdata07 and for sulfate and 966 

silicon for Cemdata18.  967 

 968 

 969 

Figure 15: Effect of the amount of limestone on the phase assemblage and the distribution of 970 

aluminium and iron in hydrated PC calculated using A) Cemdata07 and B) Cemdata18. 971 

 972 

 973 

3.2 Effect of relative humidity on hydrated cements 974 

Using the thermodynamic properties of phases with different water contents described in Section 2.5 975 

and Table 1 it was possible to predict the drying behaviour of hydrated systems. 976 

Drying of the CaO-Al2O3-SO3-CO2-H2O was simulated because it is directly relevant to PC and 977 

limestone blended cements. The initial model mixture contained C3A, portlandite (CH), calcium sulfate 978 

(SO3/Al2O3=1 molar bulk ratio), and varying amounts of calcite at 25°C. The amount of solids was kept 979 

constant at 100 g and reacted with 90 g water. A diagram of the specific volume changes of the 980 

hydrated mixture with respect to calcite content is shown in Figure 16. 981 

 982 
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 983 

Figure 16 Calculated specific volume changes of a hydrated model mixture consisting of C3A, 984 

portlandite and with fixed sulfate ratio (SO3/Al2O3=1, molar bulk ratio) in dependence of changing 985 

calcite content at 25°C.  986 

 987 
Due to their differing AFm-AFt mineralogy hydrate phase assemblages A, B and C in Figure 16, with 988 

0%, 7% and 13.2% of calcite respectively, were selected as initial hydrated systems for the drying 989 

modeling. Drying was simulated by continuously removing water from the assemblages until a RH of 990 

zero was reached. The investigated systems were: 991 

- System A: monosulfoaluminate (Ms14) and portlandite (CH) 992 

- System B: ettringite (Ett32), hemicarboaluminate (Hc12) and portlandite (CH) 993 

- System C: ettringite (Ett32), monocarboaluminate (Mc11) and portlandite (CH) 994 

 995 

Figure 17 a, b and c present the evolution of specific solid volume as a function of RH. We can see that 996 

dehydration happens stepwise at critical RH stability limits of the phase assemblages, representing 997 

invariant points where the RH is fixed due to phase rule restrictions. At this critical RH two hydration 998 

states of the same cement hydrate coexist and buffer the humidity in a similar manner as conventional 999 

drying agents. Another important finding is that the addition of calcite and the formation of 1000 

carboaluminates and ettringite will enhance the dimensional stability of hydrated cement paste and 1001 

makes it less sensitive to humidity fluctuations, which appears to be relevant for limestone blended 1002 

cements. Due to the presence of monocarboaluminate and ettringite system C is the most stable 1003 

phase assemblage, which only decomposes at very low humidities (below 2% RH) whereas 1004 

monosulfoaluminate quickly loses part of its interlayer water at <99% RH. 1005 

 1006 
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Something important to keep in mind is that, although experimentally we observe the changes shown 1007 

in Figure 17, several of these dehydration processes are metastable with respect to other phase as-1008 

semblages. This has to be considered when predicting the drying behaviour of cementitious systems. 1009 

 1010 

Figure 17: Calculated specific volume changes of a hydrated model mixture consisting of C3A, 1011 

portlandite and with fixed sulfate ratio (SO3/Al2O3=1, molar bulk ratio) in dependence of changing 1012 

calcite content at 25°C. , as shown in Figure 16 for the Systems A, B and C. 1013 

 1014 

 1015 

 1016 

4 Conclusions 1017 

The Cemdata18 database summarised in this paper can reliably calculate the type, composition, 1018 

amount and volume of hydrates formed and the pH and composition of the pore solution during 1019 

hydration and degradation of cementitious systems. The Cemdata18 database, as compiled in Table 1 1020 

to Table 4, includes carefully selected thermodynamic data published in the literature based on critical 1021 

reviews supplemented with new experimental data. Data for solids commonly encountered in cement 1022 

systems in the temperature range 0-100°C, including C-S-H, M-S-H, hydrogarnet, hydrotalcite-like 1023 

phases, some zeolite, AFm and AFt phases and their respective solid solutions has been compiled. The 1024 

Cemdata18 database is an update of the Cemdata07 and Cemdata14 databases, and is compatible 1025 

with the GEMS version of the PSI/Nagra 12/07 TDB [22, 23]. Cemdata18 TDB is freely downloadable 1026 

(http://www.empa.ch/cemdata) in formats supporting the computer programs GEM-Selektor [13, 14] 1027 

and PHREEQC [18]. Further details are available in Appendix A and B. 1028 

 1029 

The most important additions to the Cemdata18 TDB include: 1030 

 C-S-H:  1031 

o CSHQ model for Portland and blended cements, the uptake of alkalis by C-S-H is 1032 

modelled by additional Na- and K-containing end members 1033 

o CSH3T model that corresponds to pure defect-tobermorite structure with ordering at 1034 

Ca/Si ratio close to 1.0, and forms the basis for CNASH-ss model  1035 
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o C-(N-)A-S-H model for alkali activated materials (CNASH-ss), which calculates the uptake 1036 

of aluminium and sodium in low Ca/Si C-S-H 1037 

 iron-containing hydrates, in particular for the mixed Fe-Al-hydrogarnet solid solution, C3FS0.84H4.32-1038 

C3A0.5F0.5S0.84H4.32, which takes up iron and a part of the aluminium in hydrated cements 1039 

 AFm and AFt-phases with different water contents to describe the effect of water activity and 1040 

drying on hydrates 1041 

 amorphous, microcrystalline AH3 and for gibbsite to study the effect of AH3 solubility on the 1042 

hydrates in calcium aluminate and calcium sulfoaluminate cements 1043 

 chloride, nitrate and nitrate-containing AFm phases  1044 

 thaumasite and for the uptake of carbonates in SO4-ettringite.  1045 

 description of the variation in Mg/Al in layered double hydroxides (hydrotalcite-like phases) 1046 

observed in alkali activated materials  1047 

 data for M-S-H and some Na- and Ca-based zeolites, which can form at the interaction zone of 1048 

cement with clays, rocks or seawater and in alkali activated materials.  1049 

These additions improve the reliability of thermodynamic modelling of cement systems, in particular 1050 

for alkali activated materials and for processes at cement/environment interfaces, where hydrates such 1051 

as thaumasite, Friedel’s salt, M-S-H, and zeolites may form.  1052 

The consideration of siliceous hydrogarnet solid solution in Cemdata18 leads to a quite significant 1053 

redistribution of alumina and iron within the phase assemblage in PC; the predictions based on 1054 

Cemdata18 suggest that alumina is bound not only in AFt, AFm phases and hydrotalcite but also in 1055 

siliceous hydrogarnet phase while all hydrated iron is present in siliceous hydrogarnet.  1056 

 1057 

Several C-S-H solubility models as well two models for hydroxide-hydrotalcite are available (Table 4, 1058 

Appendix A and B). The CSHQ and the OH-hydrotalcite with Mg/Al = 2 are well adapted for PC 1059 

systems. Although CSHQ is able to describe the entire range of Ca/Si ratios encountered, it is best 1060 

used for high Ca/Si C-S-H as it lacks the ability to predict aluminium uptake, however, this is less 1061 

important in PC where the aluminium content is relatively low. For alkali activated binders, the CNASH 1062 

model has been developed for C-S-H type calcium (alkali) aluminosilicate hydrate gels with lower 1063 

calcium but higher aluminium and alkali content. An Mg-Al layered double hydroxide model with 1064 

variable Mg/Al ratio is also available for use in alkali activated cement systems. 1065 

 1066 

Despite significant additions to the Cemdata18 TDB, several important gaps still exist in the database. 1067 

In particular, reliable thermodynamic data for alkali, aluminium and water uptake in C-S-H applicable 1068 

to high and low Ca/Si C-S-H and M-S-H, data for hydrotalcite-like phases of variable composition and 1069 

for different interlayer ions, data for further zeolites derived from experimental solubility 1070 

measurements, data for aqueous complexes which possibly form at high pH values as well as data for 1071 

the reaction products of alkali silica reaction are needed. However, these data gaps should be viewed 1072 

as possible future improvements rather than barriers to use thermodynamic modelling: Cemdata18 1073 

database has already been successfully applied to model hydrated PC, calcium aluminate, calcium 1074 

sulfoaluminate and blended cements, and also alkali activated materials. Cemdata18, therefore, 1075 
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enables improved characterisation and understanding of the chemistry and related in-service perfor-1076 

performance properties of a wide range of cement systems, including the most common types. 1077 
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 1385 

Appendix: Cemdata18 thermodynamic dataset  1386 

A Cemdata18 dataset in GEMS format 1387 

Cemdata18 database in GEM-Selektor v.3 format can be freely downloaded 1388 

(http://www.empa.ch/cemdata) and is fully compatible with the GEMS version of the PSI/Nagra 12/07 1389 

TDB [22, 23] (http://gems.web.psi.ch). As several alternative C-S-H models, as well as two models for 1390 

hydroxide-hydrotalcite are available, the user needs to select the appropriate models during the 1391 

generation of new projects, as illustrated in Figure A.1. The CSHQ and the OH-hydrotalcite with Mg/Al 1392 

= 2 are well adapted for Portland cement systems (select cemdata, pc, ht and cshq as indicated at the 1393 

left hand side of Figure A.1).  1394 

For alkali activated binders, the CNASH model has been developed for C-S-H type calcium (alkali) 1395 

aluminosilicate hydrate gels with lower calcium but higher aluminium and alkali content. An Mg-Al 1396 

layered double hydroxide model with variable Mg/Al ratio is also available for use in alkali activated 1397 

cement systems. For alkali activated binders, the selection of cemdata and aam and deselection of pc 1398 

is recommended as illustrated at the right hand side of Figure A.1. 1399 

 1400 
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 1401 

Figure A.1: Selection of modules of Cemdata18 and related databases in GEM-Selektor to model PC 1402 

(Portland-cement) systems (left) and to model AAM (alkali-activated materials). For PC systems, one of 1403 

four alternative solid solution models of C-S-H should be selected (see Section 2.7); selection of Fe-1404 

containing solid solutions (“ss-fe3” module) is also optional.   1405 

 1406 

B  Cemdata18 dataset in PHREEQC format 1407 

To enable users to model cementitious systems using the Cemdata18 dataset with the popular 1408 

PHREEQC geochemical speciation code [18], a PHREEQC “.dat” format database of the Cemdata18 1409 

dataset (CEMDATA18-09-10-2017.dat) is provided for download from http://www.empa.ch/cemdata. 1410 

This LMA (Law of Mass Action) type dataset has been generated using the reaction generator module 1411 

of the ThermoMatch code (Miron et al. in preparation) and exported into the PHREEQC format “.dat” 1412 

file using the ThermoMatch database export module. The reaction generator algorithm is based on the 1413 

matrix “row reduce” method described by Smith and Missen [128]. In this process, all aqueous and 1414 

solid species from the Cemdata18 GEM-Selektor database were considered. The supplementary data 1415 

for aqueous, gaseous and solid species corresponding to the list of elements covered by Cemdata18 1416 

were selected from the GEMS version of the PSI/Nagra TDB [22, 23]. The latter and the Cemdata18 1417 

GEM database are mutually consistent, and should be used together in GEMS codes for modelling 1418 

cementitious systems. 1419 

To generate PHREEQC-style reactions for product species, firstly the following master species were 1420 

selected based on their generic predominance: Ca+2, Mg+2, Sr+2, Na+, K+, H+, CO3
-2, SO4

-2, Cl-, NO3
-, 1421 

AlO2
-, FeO2

-, SiO2
0, H2O0. Using selected master species, the reactions were automatically generated for 1422 

the remaining (product) species, and their properties at 25°C and 1 bar were calculated. Formation 1423 

reactions were generated for aqueous product species, and dissolution reactions - for gaseous and 1424 

solid product species. The LMA dataset of reactions was then exported into a PHREEQC “dat” file 1425 

(CEMDATA18-09-10-2017.dat) using the ThermoMatch database export module. Parameters for the 1426 
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logKo=f(T) analytical expressions were calculated for the 3-term extrapolation method that assumes 1427 

the rCpo to be not zero and independent of temperature. These reported parameters are used by 1428 

PHREEQC for calculating the log10Ko as a function of temperature. Such temperature extrapolations of 1429 

log10Ko should be valid at least up to 100°C.  1430 

Table B.1 contains the generated formation reactions for the aqueous product species, together with 1431 

the values for reaction standard effects at 25°C and 1 bar. Table B.2 contains the generated dissolution 1432 

reactions for gaseous and solid product species, together with the reaction standard effects at 25°C 1433 

and 1 bar. Table B.2 contains, in addition to the Cemdata18 database as detailed in Table 1 to Table 4, 1434 

also the thermodynamic data of all solids composed of Al, C, Ca, Cl, Fe, H, K, Mg, N, Na, S, Si or Sr 1435 

compiled in the GEMS version of the PSI/Nagra 12/07 TDB [22, 23], needed to allow the generation of 1436 

a compatible dataset in PHREEQC. Figures B.1, B.2, and B.3 show comparisons of cement-related mod-1437 

elling problems between GEM-Selektor (using GEM-type Cemdata18) and PHREEQC (using LMA-type 1438 

Cemdata18 CEMDATA18-09-10-2017.dat). For the PHREEQC calculations, PHREEQC for Windows ver-1439 

sion 2.18.00 (uses PHREEQC-2 source version 2.18.3-5570) was used. In all three cases, the considered 1440 

solid solutions were modelled in PHREEQC using the simple ideal mixing model. 1441 

 1442 

Table B.1 (in separate file) 1443 

 1444 

Table B.2 (in separate file) 1445 

 1446 

 1447 

Figure B1. Calculated (curves) solubility data for thaumasite, based on the new thermodynamic data 1448 

for thaumasite complemented with the CSHQ data from Cemdata18 [1, 7] in GEM format; Calculated 1449 

(dotted lines) solubility data for thaumasite, based on data Cemdata18 [1, 7] in PHREEQC format.  1450 

 1451 



43 
 

 1452 

Figure B2: Effect of the amount of limestone on the phase assemblage and the distribution of alumin-1453 

ium and iron in hydrated Portland cement calculated using Cemdata18 GEM format (dashed lines) and 1454 

Cemdata18 PHREEQC format (dotted lines), in both cases using ideal solid solutions. 1455 

 1456 

 1457 

Figure B3. Calculated aqueous composition in equilibrium with CO3-SO4-ettringite solid solution as a 1458 

function of SO4 in the solid. Solid lines calculated using the Cemdata18 GEM format using non ideal 1459 

solid solution; Dashed lines calculated using the Cemdata18 GEM format using ideal solid solution; 1460 

Dotted lines calculated using the Cemdata18 PHREEQC format using ideal solid solution; Circles: ex-1461 

perimental data [7, 129] 1462 



44 
 

C Thermodynamic equations and assumptions  1463 

The solubility products compiled in Cemdata18 have generally been derived from solutions composi-1464 

tion measured at different temperatures, as documented in detail in [1, 7-10, 12, 27, 28, 30, 31, 34-37, 1465 

39-41]. The activity of a species i, ai, has been calculated with GEMS from the measured concentrations 1466 

considering the formation of aqueous complexes. By definition ai = i*mi, where i is the activity coeffi-1467 

cient and mi the concentration in mol/kg H2O. Activity coefficients of aqueous species i were comput-1468 

ed using the built-in extended Debye-Hückel equation with the common ion-size parameter ai of 3.67 1469 

Å for KOH and 3.31 Å for NaOH solutions and the common third parameter by according to the equa-1470 

tion (C.1):  1471 
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                                           (C.1) 1472 

where zi denotes the charge of species i, I is the effective molal ionic strength, by is a semi-empirical 1473 

parameter (～0.123 for KOH and ～0.098 for NaOH electrolyte at 25°C), and Ay and By are P,T-1474 

dependent coefficients. For uncharged species, equation (C.1) reduces to Ibyi log . This extended 1475 

Debye-Hückel activity correction is applicable up to approx. 1 m ionic strength [130].  1476 

From the solubility products K of solids calculated at different temperatures T, the Gibbs free energy of 1477 

reaction, ∆rG°, the Gibbs free energy of formation, ∆fG°, and the absolute entropy, S°, at T0=298.15 K 1478 

were obtained according to equations (C.2) and (C.3): 1479 
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Using C°p = a0 + a1T + a2T-2 + a3T-0.5 [131], where a0-3 are the empirical parameters defined for each 1482 

mineral, the two integral terms of equation (C.3) can be solved to give equation (C.4):  1483 
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 (C.4) 1485 

where i  are the stoichiometric reaction coefficients, R = 8.31451 J/mol/K, T is the temperature in K, 1486 

and C°p is the heat capacity at constant pressure. The apparent Gibbs free energy of formation, ∆aG°T, 1487 

refers to standard Gibbs energies of elements at 298.15 K. A more detailed description of the deriva-1488 

tion of the dependence of the Gibbs free energy on temperature is available in [131, 132].  1489 

 1490 

Dependence of the solubility product on temperature, consistent to Eq C.4 can be expressed as: 1491 
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[131], where A0, … A6 are empirical coefficients. If the entropy (S°), the enthalpy (∆fH°), and the coeffi-1493 

cients (a0, a1, …) of the heat capacity equation (C°p=a0 + a1T + a2T-2 + a3T-0.5 + a4T2) of the species are 1494 

available, the coefficients A0, …  A6 can be calculated directly (see [131]). These calculations involving 1495 

Eqs C.4 and C.5 are all implemented in the GEM-Selektor.  1496 

The heat capacity function, Cp=f(T) is usually obtained from calorimetry experiments. In many cases, 1497 

the heat capacity has to be estimated by using a reference reaction with a solid having a known heat 1498 

capacity and similar structure, as described in publications [1, 7-10, 12, 27, 28, 30, 31, 34-37, 39-41]. 1499 

Helgeson et al. [43] applied this principle successfully to estimate heat capacities of silicate minerals by 1500 

formulating reactions involving structurally-related minerals with known heat capacity functions. This 1501 

method has limitations due to the differing thermodynamic properties of “water” varieties, bound 1502 

loosely as a hydration water, or structurally as OH-groups. To minimize errors associated with the vary-1503 

ing strengths of bonding for “water”, reference reactions had been formulated to involve no “free” wa-1504 

ter as a substituent in reactions, wherever appropriate.  1505 

The value of 0
prC  has little influence on the calculated log K value in the temperature range 0-100°C 1506 

and is thus often assumed to be constant in a narrow temperature range: rCp0
T = rCp0

T0 = ao. This 1507 

simplifies Eq. C.5 to the so called 3-term approximation of the temperature dependence, see Eq. C.6, 1508 

which can be used to compute the standard thermodynamic properties of each solid [132] to obtain a 1509 

temperature-dependent “log K” function using equations C.6-C.12 (implemented in GEMS).  1510 
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Within the relatively narrow temperature range of 0 to 100C, where the Cemdata18 database is valid, 1518 

this simplification has a negligible influence on the resulting solubility products, also for non-1519 

isoelectric reactions as exemplified for ettringite in [20].  1520 

 1521 
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D Thermodynamic data for aqueous and gaseous species  1522 

The thermodynamic data for aqueous and gaseous species compatible with Cemdata18 are summa-1523 

rized in Table D.1 and D.2. 1524 

 1525 

Table D.1 Standard (partial molal) thermodynamic properties and equation of state parameters of 1526 

aqueous species at 25°C, 1 bar used in GEM calculations, as detailed in the GEMS version of the 1527 

PSI/Nagra 12/07 TDB [22, 23]. Numbers referring to the charge of aqueous species are written after the 1528 

plus or minus signs to avoid any ambiguity; “@” is used to represent a neutral aqueous species.  1529 

Species ∆G⁰ ∆H⁰ S⁰ Cp⁰ V⁰ a1·10* a2·10-2* a3 a4·10-4 c1 c2·10-4 ω0·10-5 

 (kJ/mol) (kJ/mol) (J/mol∙K) (J/mol∙K) (J/bar) (cal/mol/ba (cal/mol) (cal∙K/mol/bar) (cal∙K/mol) (cal/mol/K) (cal∙K/mol) (cal/mol) 

Al(SO4)+  -1250.43 -1422.67 -172.38 -204.01 -6.02 1.3869 -4.3920 7.4693 -2.5974 -11.6742 -12.9914 1.1729 

Al(SO4)2-  -2006.30 -2338.40 -135.50 -268.37 31.11 6.8275 8.8925 2.2479 -3.1466 -12.0220 -16.1447 2.1199 

Al+3  -483.71 -530.63 -325.10 -128.70 -45.24 -3.3802 -17.0071 14.5185 -2.0758 10.7000 -8.0600 2.7530 

AlO+  -660.42 -713.64 -112.97 -125.11 0.31 2.1705 -2.4811 6.7241 -2.6763 -2.5983 -9.1455 0.9570 

AlO2
-  -827.48 -925.57 -30.21 -49.04 9.47 3.7221 3.9954 -1.5879 -2.9441 15.2391 -5.4585 1.7418 

AlO2H@  -864.28 -947.13 20.92 -209.21 13.01 3.5338 0.8485 5.4132 -2.8140 -23.4129 -13.2195 -0.0300 

AlOH+2  -692.60 -767.27 -184.93 55.97 -2.73 2.0469 -2.7813 6.8376 -2.6639 29.7923 -0.3457 1.7247 

Ca(CO3)@  -1099.18 -1201.92 10.46 -123.86 -15.65 -0.3907 -8.7325 9.1753 -2.4179 -11.5309 -9.0641 -0.0380 

Ca(HCO3) -1146.04 -1231.94 66.94 233.70 13.33 3.7060 1.2670 5.2520 -2.8310 41.7220 8.3360 0.3080 

Ca(HSiO3) -1574.24 -1686.48 -8.33 137.80 -6.74 1.0647 -5.1787 7.7785 -2.5649 30.8048 3.6619 0.5831 

Ca(SO4)@  -1310.38 -1448.43 20.92 -104.60 4.70 2.4079 -1.8992 6.4895 -2.7004 -8.4942 -8.1271 -0.0010 

Ca+2  -552.79 -543.07 -56.48 -30.92 -18.44 -0.1947 -7.2520 5.2966 -2.4792 9.0000 -2.5220 1.2366 

CaOH+  -717.02 -751.65 28.03 6.05 5.76 2.7243 -1.1303 6.1958 -2.7322 11.1286 -2.7493 0.4496 

CH4
@  -34.35 -87.81 87.82 277.26 37.40 6.7617 8.7279 2.3212 -3.1397 42.0941 10.4707 -0.3179 

Cl-  -131.29 -167.11 56.74 -122.49 17.34 4.0320 4.8010 5.5630 -2.8470 -4.4000 -5.7140 1.4560 

ClO4
-  -8.54 -129.33 182.00 -24.00 43.90 8.1411 15.5654 -7.8077 -3.4224 16.4500 -6.5700 0.9699 

CO2
@  -386.02 -413.84 117.57 243.08 32.81 6.2466 7.4711 2.8136 -3.0879 40.0325 8.8004 -0.0200 

CO3
-2 -527.98 -675.31 -50.00 -289.33 -6.06 2.8524 -3.9844 6.4142 -2.6143 -3.3206 -17.1917 3.3914 

e-  0 0 65.34 14.42 0 0 0 0 0 0 0 0 

Fe(CO3)@  -644.49 -763.51 -58.45 -123.03 -17.23 -0.6069 -9.2604 9.3828 -2.3961 -11.4137 -9.0233 -0.0380 

Fe(HCO3)+  -689.86 -794.10 -8.87 231.41 8.18 3.1064 -0.1934 5.8191 -2.7710 43.9175 8.2195 0.5831 

Fe(HSO4)+  -853.48 -990.45 10.21 338.23 18.81 4.5330 3.2897 4.4500 -2.9149 58.2305 13.4217 0.5121 

Fe(HSO4)+ -787.15 -981.91 -248.95 426.71 2.32 2.8251 -0.8804 6.0891 -2.7426 83.8315 17.6994 1.9551 

Fe(SO4)@  -848.81 -993.86 -16.86 -101.60 1.67 1.9794 -2.9454 6.9007 -2.6572 -8.4131 -7.9804 -0.0380 

Fe(SO4)+  -784.71 -942.42 -124.68 -145.93 -2.64 1.7837 -3.4232 7.0885 -2.6374 -5.1341 -10.1600 0.9986 

Fe(SO4)2
-  -1536.81 -1854.38 -87.78 -210.37 30.49 6.6756 8.5215 2.3937 -3.1312 -5.4923 -13.3173 1.9457 

Fe+2  -91.50 -92.24 -105.86 -32.44 -22.64 -0.7867 -9.6969 9.5479 -2.3780 14.7860 -4.6437 1.4382 

Fe+3  -17.19 -49.58 -277.40 -76.71 -37.79 -2.4256 -13.6961 11.1141 -2.2127 19.0459 -6.8233 2.5812 

FeCl+  -223.59 -258.05 -42.09 86.49 0.85 2.1468 -2.5367 6.7401 -2.6741 24.6912 1.1617 0.7003 

FeCl+2  -156.92 -212.67 -178.82 14.83 -22.86 -0.7164 -9.5277 9.4878 -2.3851 23.8149 -2.3482 1.7013 

FeCl2+  -291.92 -385.75 -129.66 300.72 10.27 3.5610 0.9165 5.3828 -2.8168 57.6940 11.5846 1.0276 
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FeCl3@  -417.51 -564.39 -131.06 368.22 35.94 6.6686 8.5038 2.4024 -3.1304 57.3959 14.8930 -0.0380 

FeO+  -222.00 -255.09 -46.44 -200.94 -42.02 -3.7118 -16.8408 12.3595 -2.0827 -15.3982 -12.8325 0.7191 

FeO2
-  -368.26 -443.82 44.35 -234.93 0.45 2.3837 -1.9602 6.5182 -2.6979 -13.3207 -14.5028 1.4662 

FeO2H@  -419.86 -480.95 92.88 -312.14 7.21 2.7401 -1.0905 6.1776 -2.7338 -37.8300 -18.2305 -0.0300 

FeOH+  -274.46 -325.65 -41.84 63.06 -16.71 -0.2561 -8.4029 9.0457 -2.4315 21.4093 0.0209 0.7003 

FeOH+2  -241.87 -292.79 -106.27 -33.69 -25.34 -1.1562 -10.6009 9.9077 -2.3407 14.6102 -4.7048 1.4382 

H+  0 0 0 0 0 0 0 0 0 0 0 0 

H2
@  17.73 -4.02 57.74 166.85 25.26 5.1427 4.7758 3.8729 -2.9764 27.6251 5.0930 -0.2090 

H2O@  -237.18 -285.88 69.92 75.36 18.07 0 0 0 0 0 0 0 

H2S@  -27.93 -39.03 125.52 179.17 34.95 6.5097 6.7724 5.9646 -3.0590 32.3000 4.7300 -0.1000 

HCN@  114.37 103.75 131.30 0 0 0 0 0 0 0 0 0 

HCO3
-  -586.94 -690.01 98.45 -34.85 24.21 7.5621 1.1505 1.2346 -2.8266 12.9395 -4.7579 1.2733 

HS-  11.97 -16.22 68.20 -93.93 20.21 5.0119 4.9799 3.4765 -2.9849 3.4200 -6.2700 1.4410 

HSiO3
-  -1014.60 -1144.68 20.92 -87.20 4.53 2.9735 -0.5181 5.9467 -2.7575 8.1489 -7.3123 1.5511 

HSO3
-  -529.10 -627.70 139.75 -5.38 32.96 6.7014 8.5816 2.3771 -3.1338 15.6949 -3.3198 1.1233 

HSO4
-  -755.81 -889.23 125.52 22.68 34.84 6.9788 9.2590 2.1108 -3.1618 20.0961 -1.9550 1.1748 

K(SO4)-  -1031.77 -1158.77 146.44 -45.13 27.46 5.9408 6.7274 3.0989 -3.0571 9.9089 -5.2549 1.0996 

K+  -282.46 -252.14 101.04 8.39 9.01 3.5590 -1.4730 5.4350 -2.7120 7.4000 -1.7910 0.1927 

KOH@  -437.11 -474.15 108.37 -85.02 14.96 3.7938 1.4839 5.1619 -2.8402 -6.1240 -7.2104 -0.0500 

Mg(CO3)@  -998.98 -1132.12 -100.42 -116.50 -16.78 -0.5450 -9.1130 9.3320 -2.4020 -10.4990 -8.7060 -0.0380 

Mg(HCO3) -1047.02 -1153.97 -12.55 254.42 9.34 3.2710 0.2060 5.6690 -2.7880 47.2840 9.3400 0.5990 

Mg(HSiO3 -1477.15 -1613.91 -99.50 158.65 -10.85 0.6289 -6.2428 8.1967 -2.5209 36.7882 4.6702 0.9177 

Mg+2  -453.99 -465.93 -138.07 -21.66 -22.01 -0.8217 -8.5990 8.3900 -2.3900 20.8000 -5.8920 1.5372 

MgOH+  -625.87 -690.02 -79.91 129.23 1.64 2.3105 -2.1365 6.5827 -2.6906 32.0008 3.2394 0.8449 

MgSO4
@  -1211.97 -1368.77 -50.88 -90.31 1.81 1.9985 -2.8987 6.8823 -2.6591 -6.8307 -7.4304 -0.0380 

N2
@  18.19 -10.37 95.81 234.16 33.41 6.2046 7.3685 2.8539 -3.0836 35.7911 8.3726 -0.3468 

Na(CO3)-  -797.11 -938.56 -44.31 -51.28 -0.42 2.3862 -1.9521 6.5103 -2.6982 15.3395 -5.5686 1.7870 

Na(HCO3) -847.39 -929.50 154.72 200.33 32.32 6.1730 7.2943 2.8760 -3.0805 33.8790 6.7193 -0.0380 

Na(SO4)-  -1010.34 -1146.66 101.75 -30.09 18.64 4.7945 3.9284 4.1990 -2.9414 13.4899 -4.5256 1.2606 

Na+  -261.88 -240.28 58.41 38.12 -1.21 1.8390 -2.2850 3.2560 -2.7260 18.1800 -2.9810 0.3306 

NaOH@  -418.12 -470.14 44.77 -13.40 3.51 2.2338 -2.3287 6.6683 -2.6826 4.0146 -3.6863 -0.0300 

NH3
@  -26.67 -81.53 107.82 76.89 24.45 5.0911 2.7970 8.6248 -2.8946 20.3000 -1.1700 -0.0500 

NH4
+  -79.40 -133.26 111.17 67.11 18.08 3.8763 2.3448 8.5605 -2.8759 17.4500 -0.0210 0.1502 

NO3
-  -110.91 -206.89 146.94 -66.80 28.66 7.3161 6.7824 -4.6838 -3.0594 7.7000 -6.7250 1.0977 

O2
@  16.45 -12.24 108.95 234.13 30.50 5.7889 6.3536 3.2528 -3.0417 35.3530 8.3726 -0.3943 

OH-  -157.27 -230.01 -10.71 -136.34 -4.71 1.2527 0.0738 1.8423 -2.7821 4.1500 -10.3460 1.7246 

S2O3
-2  -519.99 -649.86 66.94 -238.47 27.59 6.6685 12.4951 -7.7281 -3.2955 -0.0577 -14.7066 2.9694 

SCN-  92.70 76.40 144.01 -39.69 35.36 7.0244 9.3687 2.0708 -3.1662 10.7414 -4.9900 1.1073 

SO3
-2  -487.89 -636.89 -29.29 -280.99 -4.12 2.4632 -1.7691 6.4494 -2.7058 -2.7967 -16.7843 3.3210 

SO4
-2  -744.46 -909.70 18.83 -266.09 12.92 8.3014 -1.9846 -6.2122 -2.6970 1.6400 -17.9980 3.1463 

Sr(CO3)@  -1107.83 -1207.29 35.56 -134.32 -15.23 -0.3332 -8.5922 9.1201 -2.4237 -12.9961 -9.5733 -0.0380 

Sr(HCO3)+  -1157.54 -1239.00 95.94 210.07 14.08 3.7702 1.4274 5.1820 -2.8380 37.4746 7.1883 0.2058 

Sr(SO4)@  -1321.37 -1451.50 61.59 -110.60 5.02 2.4382 -1.8251 6.4604 -2.7035 -9.6731 -8.4183 -0.0380 

Sr+2  -563.84 -550.87 -31.51 -41.56 -17.76 0.7071 -10.1508 7.0027 -2.3594 10.7452 -5.0818 1.1363 

SrOH+  -725.16 -754.14 61.09 -31.66 7.10 2.8620 -0.7922 6.0586 -2.7462 4.7576 -4.5826 0.3306 
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Temperature correction using Cp(T) integration    a0 a1 a2        (Cp⁰ =a0 + a1T + a2T-2) 

SiO2
@** -833.41 -887.86* 41.34 44.47 1.61 46.94 0.034 -1.13E+06     

Temperature correction using logK(T)    A0 A1 A2        (logKT=A0+A1T+A2T-1) 

SiO3
-2** -938.51 -1098.74 -80.20 119.83 0 -10.0006 0 -3917.5     

Si4O10
-4*** -3600.81 -3915.99 305.20 328.58 0 0 0 -10822.8     

CaSiO3
@** -1517.56 -1668.06 -136.68 88.90 0 0 0 1371.49     

MgSiO3
@ -1425.03 -1554.54 -75.17 -264.79 0 5.7 0 0     

AlSiO5
-3 *** -1769.01 -2027.33 -110.41 70.78 -3.41 0 0 158.02     

AlHSiO3
+2  -1540.55 -1634.31 -24.99 -215.896 0 14.5828 0 -2141.57     

FeHSiO3
+2 -1087.15 -1194.26 -70.77 -163.91 0 9.7 0 0     

Fe2(OH)2
+4 -491.9 -614.44 -281.97 -2.71 0 6.94586 0 -2950.45     

Fe3(OH)4
+5 -964.33 -1232.44 -472.43 71.30 0 4.1824 0 -3125.33     

SrSiO3
@ *** -1527.29 -1617.43 79.92 78.39 1.64 0 0 1302.92     

S-2 120.42 -16.22 -295.55 -93.93 0 -19 0 0     

* parameters of the HKF-equation of state; given in original calorimetric units (see [25, 26, 133]) as used in GEM.  1530 
** calculated in Matschei et al. [7] assuming ∆rS°=∆rC°p=0 using S° and C°p from SiO2

 (quartz) for the reactions: SiO2
0 -> 1531 

SiO2(quartz) ∆rG°=∆rH°= -21.386; SiO3
2- +2H+ -> SiO2

0+H2O ∆rG°= 132.08, ∆rH°= 75, ∆rS°= -191.46, ∆rC°p= 0; SiO3
2- +Ca2+ -> Ca-1532 

SiO3
0 ∆rG°=∆rH°= -26.257, ∆rS°= 0, ∆rC°p= 0; 1533 

*** calculated in this paper assuming ∆rS°=∆rC°p=0 using S° and C°p from SiO2
 (quartz) for the reactions: SiO3

2- +AlO2
- -> AlSiO5

3- 1534 
∆rG°=HrG°= -3.025, ∆rS°= 0, ∆rC°p= 0; Si4O10

4- + 4H+ -> 4SiO2
0+2H2O ∆rG°=∆rH°= 207.2, ∆rS°= 0, ∆rC°p= 0; SiO3

2- +Mg2+ -> 1535 
MgSiO3

0 ∆rG°= -32.54, ∆rH°= 0, ∆rS°= 109.126, ∆rC°p= 0; SiO3
2- +Sr2+ -> SrSiO3

0 ∆rG°=∆rH°= -29.944, ∆rS°= 0, ∆rC°p= 0;  1536 
*v From the GEMS version of the PSI/Nagra 12/07 TDB [22, 23]: Al+3 + HSiO3

- -> AlHSiO3
+2 ∆rG°= -42.24, ∆rH°= 41, ∆rS°= 279.19, 1537 

∆rC°p= 0; Fe+3 + HSiO3
- -> FeHSiO3

+2 ∆rG°= -55.37, ∆rH°= 0, ∆rS°= 185.7, ∆rC°p= 0; 2Fe+3 + 2H2O -> Fe2(OH)2
+4 + 2H+ ∆rG°= 1538 

16.84, ∆rH°= 56.486, ∆rS°= 132.98, ∆rC°p= 0; 3Fe+3 + 4H2O -> Fe3(OH)4
+5 + 4H+ ∆rG°= 35.96, ∆rH°= 59.834, ∆rS°= 80.07, ∆rC°p= 0; 1539 

 1540 

 1541 

Table D.2 Standard (partial molal) thermodynamic properties and heat capacity coefficients 1542 

(Cp⁰ =a0 + a1T + a2T-2) of gaseous species at 25°C, 1 bar used in GEM calculations, as used in 1543 

the GEMS version of the PSI/Nagra 12/07 TDB [22, 23]. 1544 

Species ∆G⁰ ∆H⁰ S⁰ Cp⁰ V⁰ a0 a1 a2 

 (kJ/mol) (kJ/mol) (J/mol∙K) (J/mol∙K) (J/bar) (J/mol/K) (J/mol/K2) (J∙K/mol) 

CH4  -50.66 -74.81 186.26 35.75 2479 23.64 0.0479 -192464 

CO2  -394.39 -393.51 213.74 37.15 2479 44.22 0.0088 -861904 

H2  0 0 130.68 28.82 2479 27.28 0.0033 50208 

H2O  -228.68 -242.40 187.25 40.07 2479 52.99 -0.0435 5472 

H2S  -33.75 -20.63 205.79 34.20 2479 32.68 0.0124 -192464 

N2  0 0 191.61 29.13 2479 28.58 0.0038 -50208 

O2  0 0 205.14 29.32 2479 29.96 0.0042 -167360 

 1545 

 1546 


