
Computer Physics Communications 247 (2020) 106912

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

On architecture and performance of adaptivemesh refinement in an
electrostatics Particle-In-Cell code
Matthias Frey ∗, Andreas Adelmann, Uldis Locans
Paul Scherrer Institut, CH-5232 Villigen, Switzerland

a r t i c l e i n f o

Article history:
Received 6 June 2019
Received in revised form 6 September 2019
Accepted 9 September 2019
Available online 23 September 2019

Keywords:
Multigrid Poisson solver
Adaptive mesh refinement
Hardware portability
Particle-In-Cell
Neighbouring bunches
High intensity cyclotrons

a b s t r a c t

This article presents a hardware architecture independent implementation of an adaptive mesh
refinement Poisson solver that is integrated into the electrostatic Particle-In-Cell beam dynamics code
OPAL. The Poisson solver is solely based on second generation Trilinos packages to ensure the desired
hardware portability. Based on the massively parallel framework AMReX, formerly known as BoxLib,
the new adaptive mesh refinement interface provides several refinement policies in order to enable
precise large-scale neighbouring bunch simulations in high intensity cyclotrons. The solver is validated
with a built-in multigrid solver of AMReX and a test problem with analytical solution. The parallel
scalability is presented as well as an example of a neighbouring bunch simulation that covers the
scale of the later anticipated physics simulation.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In todays state-of-the-art beam dynamics codes the well-
known Particle-In-Cell (PIC) [1] technique has become indispens-
able. In contrast to the direct summation, where the force on
a macro particle is obtained by the superposition of the forces
due to all others, PIC models discretise a domain and deposit
the charge of each macro particle onto a mesh in order to
evaluate Coulomb’s repulsion. In combination with the efficient
parallelisation of such space-charge solvers using MPI (Message
Passing Interface) or accelerators such as GPU (Graphics Pro-
cessing Unit) and the MIC (Many Integrated Core) architecture,
e.g. in [2], large-scale simulations were enabled that are more
realistic. Nevertheless, multi-bunch simulations of high intensity
accelerators such as cyclotrons require fine meshes in order to
resolve the non-linear effects in the evolution of the beams due
to space-charge. A remedy to increase the resolution, reduce the
computational effort and also memory consumption is adaptive
mesh refinement (AMR) [3,4]. In the context of Vlasov–Poisson
problems, AMR was applied by [5] using the Eulerian description
for the coordinate and velocity space. Examples for a Lagrangian
formulation are the Unified Flow Solver (UFS) framework [6] and
WarpX [7].

The diversity of today’s computer architectures and the fast
increase of emerging high performance computing technologies

∗ Corresponding author.
E-mail addresses: matthias.frey@psi.ch (M. Frey), andreas.adelmann@psi.ch

(A. Adelmann).

have shown that it is getting more and more infeasible to de-
sign a scientific software to one specific hardware only. It is
therefore obvious that recent source code developments reveal a
trend towards architecture independent programming where the
backend kernels exhibit the hardware-specific implementation.
Examples are the second generation Trilinos [8] packages that
are built on top of the Kokkos library [9,10].

In this article the new AMR capability of the particle ac-
celerator library OPAL (Object-Oriented Particle Accelerator Li-
brary) [11] using AMReX [12] is presented, as well as the built-in
adaptive multigrid solver based on the algorithm in [13] and the
second generation Trilinos packages Tpetra [14], Amesos2 and Be-
los [15], MueLu [16,17] and Ifpack2 [18]. The new implementation
was benchmarked with the Poisson multigrid solver of AMReX
and the analytical example of a uniformly charged sphere.

The new AMR feature of OPAL will enable to study neighbour-
ing bunch effects as they occur in high intensity cyclotrons due
to the low turn separation in more detail. Previous investigations
such as [19] for the PSI (Paul Scherrer Institut) Ring cyclotron
have already shown their existence but the PIC model was limited
in resolution due to the high memory needs. It is hoped that the
use of AMR will reduce the memory consumption for the mesh
by decreasing the resolution in regions of void while maintaining
or even increasing the grid point density at locations of interest
in order to resolve the neighbouring bunch interactions more
precisely. In [19] was shown that the interaction of neighbouring
bunches leads to an increase at the tails of a particle distribution
(i.e. increase of the number of halo particles) that usually causes
particle losses and therefore an activation of the machine. Thus,
it is essential to quantify this effect more precisely in order to do

https://doi.org/10.1016/j.cpc.2019.106912
0010-4655/© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cpc.2019.106912
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2019.106912&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:matthias.frey@psi.ch
mailto:andreas.adelmann@psi.ch
https://doi.org/10.1016/j.cpc.2019.106912
http://creativecommons.org/licenses/by/4.0/

2 M. Frey, A. Adelmann and U. Locans / Computer Physics Communications 247 (2020) 106912

predictions on further machine developments with higher beam
current.

Besides a short introduction to OPAL in Section 2 and AMReX
in Section 3, Section 4 discusses the AMR interface in OPAL.
Section 5 explains the multigrid algorithm and its implementa-
tion using Trilinos with validation in Section 6. A comparison of
neighbouring bunch simulations with either AMR turned on or
off is shown in Section 7. The performance of the Poisson solver
is discussed in Section 8. In the last section are conclusions and
outlook.

2. The OPAL library

The Object-Oriented Parallel Accelerator Library (OPAL)
[11] is an electrostatic PIC (ES-PIC) beam dynamics code for
large-scale particle accelerator simulations. Due to the general
design its application ranges from high intensity cyclotrons to low
intensity proton therapy beamlines [20] with negligible space-
charge. Besides the default FFT (Fast Fourier Transform) Poisson
solver for periodic and open boundary problems the built-in
SAAMG (Smoothed Aggregation Algebraic Multigrid) solver en-
ables to simulate accelerators with arbitrary beam pipe shapes
[21]. The time integration relies on the second order Leapfrog,
the fourth order Runge–Kutta (RK-4) or a multiple stepping
Boris–Buneman method [22].

In beam dynamics the evolution of the density function f (x, p,
t) in time t of the charged particle distribution in phase space
(x, p) ∈ R6 due to electromagnetic fields E(x, t) and B(x, t) is
described by the Vlasov (or collisionless Boltzmann) equation
df (x, p, t)

dt
= γm0

∂ f
∂t
+ p · ∇xf

+
q

γm2
0

(γm0E(x, t)+ p× B(x, t)) · ∇pf = 0, (1)

with particle charge q and rest mass m0. The relativistic momen-
tum p = γm0v with Lorentz factor γ and particle velocity v is
used together with the coordinate x to specify the state of a par-
ticle in the 6D phase space. Both, the electric and magnetic field,
in Eq. (1) are a sum of an external and internal, i.e. space-charge,
contribution

E(x, t) = Esc(x, t)+ Eext (x, t),
B(x, t) = Bsc(x, t)+ Bext (x, t).

The external fields are given by RF-cavities and by the magnetic
field of the machine. In order to evaluate the electric self-field
the beam is Lorentz transformed into its rest frame where the
magnetic field induced by the motion of the particles is negligible.
Thus, the electric self-field is fully described by the electrostatic
potential φ(x, t), i.e.

Esc(x, t) = −∇φ(x, t)

that is computed by Poisson’s equation

∆φ(x, t) = −
ρ(x, t)

ε0
,

with charge density ρ and vacuum permittivity ε0. The magnetic
self-field is afterwards restored by the inverse Lorentz trans-
form. This quasi-static approximation is known as Vlasov–Poisson
equation.

3. The AMReX library

The AMReX library [12] is a descendant of the parallel block-
structured adaptive mesh refinement code named BoxLib. It is
C++ based with an optional Fortran90 interface. Each level is dis-
tributed independently among MPI-processes in order to ensure

Fig. 1. Sketch of a block-structured mesh refinement of a Cartesian grid Ω0 in
2D with AMReX. Fine levels denoted by Ω1 and Ω2 may span multiple coarser
grids as indicated. At interfaces among grids of same level ghost cells allow
exchanging data.

load balancing. The owned data is located either at nodes, faces,
edges or centres of cells where the latter description is used in
the OPAL-AMR implementation.

In order to generate a level l + 1 each cell of the underlying
coarser level l has to be marked to get refined or not according to
a user-defined criterion. In electrostatic problems natural choices
are for example the charge density, the potential strength or the
electric field (cf. Section 4.2). Subsequent AMR levels satisfy the
relation

hl+1
w =

hl
w

rw
∀w ∈ [x, y, z], (2)

where rw ∈ N \ {0} is called the refinement ratio and hl
w specifies

the mesh spacing of level l in direction of w. A sketch of a refined
mesh is given in Fig. 1. By definition, the coarsest level (l = 0)
covers the full domain Ω = Ω0 whereas a fine level is defined
by patches that may overlap several coarser grids. In general, for
a level l > 0 with n grids gi following holds

Ω l
=

(
n−1⋃
i=0

g l
i

)
⊂ Ω l−1,

g l
i ∩ g l

j = ∅ ∀i, j ∈ {0, 1, . . . , n− 1} and i ̸= j.

Although neighbouring grids are not allowed to overlap they
exchange data at interfaces via ghost cells.

4. Adaptive mesh refinement in the OPAL library

In order to allow AMR and uniform mesh PIC algorithms, the
interface in OPAL is implemented in a lightweight fashion where
an AMR library is used as a black box. The AMR functionality
is provided by concrete implementations of the abstract base
class that defines common requirements on AMR libraries such
as refinement strategies and mesh update functions. The actual
AMR implementation is therefore hidden allowing multiple AMR
dependencies.

In AMR mode the allocation of work among MPI-processes
is controlled by AMReX. In contrast to OPAL where load bal-
ancing is optimised w.r.t. the macro particles, AMReX aims to
achieve a uniform workload of grid operations. These two par-
allelisation paradigms are contradictory and cause additional
MPI-communication for every PIC operation if both, grids and
particles, are kept evenly distributed among the MPI-processes. In

M. Frey, A. Adelmann and U. Locans / Computer Physics Communications 247 (2020) 106912 3

Fig. 2. Workflow of the space-charge calculation. Poisson’s equation is solved in the computation domain and rescaled afterwards. All steps in particle space Sp and
computation space Sc are marked in blue and green, respectively. The mapping of the particle coordinates in space Sp to Sc involves also the Lorentz transform.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

order to reduce communication effort at the expense of possible
particle load imbalances the developed AMR interface distributes
the particles according to their grids. For this purpose a new par-
ticle layout manager is created that stores further AMR specific
attributes, i.e. the level and the grid a particle lives on.

A peculiarity of the PIC model in OPAL is the adjustment of
the grid Ω0 (cf. Fig. 1) to the particle bunch. The mesh that
is co-moving with the macro particles adapts dynamically to
the dimension of the bunch in rest frame, keeping the number
of grid points per dimension constant, with the consequence
of a constantly changing grid spacing. In longitudinal direction,
i.e. the direction of travel, this change includes the correction of
relativistic length contraction in laboratory frame. In AMR mode
instead the macro particles are mapped to a fixed domain since
the problem geometry has to be predefined in AMReX. This linear
transformation includes the Lorentz transform of the particles.
Adaptive mesh refinement, particle partitioning and the calcula-
tion of the electrostatic potential (cf. Section 4.1) are carried out
there.

Spurious self-forces on particles close by coarse–fine grid in-
terfaces that occur in AMR due to image charges are corrected
by buffer cells as described in [23]. Another solution as depicted
in [24] would be the modification of the charge deposition algo-
rithm using a convolution of Green’s function for particles near a
refinement boundary.

4.1. Domain transform

In order to prevent particles leaving the predefined domain of
the mesh where the AMR hierarchy is built, they are mapped into
a computation space denoted by Sc for the evaluation of Poisson’s
equation, the repartition of the particles to MPI-processes and
the mesh refinement. Therefore, the geometry can be kept at δSc
where δ specifies a constant box increment in percent to increase
the margin of the mesh. In the co-moving frame the natural
choice of the computation space is Sc = [−1, 1]3 since the bunch
is located around the design trajectory with the reference particle
at (x, y, z) = (0, 0, 0). In order to consider an inhomogeneous
problem domain, the box dimension of Sc can be adjusted by
the user at the beginning. After solving Poisson’s equation the
electrostatic potential and the electric field have to be rescaled
properly. Instead of rescaling the fields at the location of the
particles, it is directly done on the grid as depicted in Fig. 2.
The mapping of the particle coordinates in co-moving space Sp
to computation space Sc includes also the Lorentz transform.

4.1.1. Particle coordinate
Let x = (x0, x1, x2) ∈ Sp be a coordinate of some particle in

the particle space Sp and let l = (l0, l1, l2) > 0, then we define

Γ (x, l) := max
i={1,2,3}

⏐⏐⏐⏐xili
⏐⏐⏐⏐ .

The transform of an individual particle at position x ∈ Sp into
computation space x∗ ∈ Sc = [−l0, l0] × [−l1, l1] × [−l2, l2] is
therefore given by

x∗ =
x
s

with s = argmax
x∈Sp

N−1∑
i=0

Γ (xi, l),

where N is the number of particles.

4.1.2. Electrostatic potential
Let φ ∈ Sp be the electrostatic potential in particle space Sp

and φ∗ ∈ Sc the corresponding potential value in computation
space Sc , then they relate as

φ =
1
s
φ∗. (3)

Proof. Let the discrete charge density of N particles be described
by [25, eq. 1.6]

ρ(x) =
N∑
i=1

qiδ(x− xi) x ∈ Rd,

in d dimensions and the coordinates being transformed as de-
noted above then

ρ = s−dρ∗

with s > 0 and
∂

∂w
=

∂w∗

∂w

∂

∂w∗
= s−1

∂

∂w∗

where w = x1, x2, . . . , xd. Thus,

∆φ = −
ρ

ϵ0

s−2∆∗φ = −s−d
1
ε0

ρ∗

s−2∆∗φ = s−d∆∗φ∗

φ = s2−dφ∗.

Therefore, the potential transforms in 3 dimensions as denoted in
Eq. (3). In 2 dimensions the electrostatic potential remains. □

4 M. Frey, A. Adelmann and U. Locans / Computer Physics Communications 247 (2020) 106912

Fig. 3. Integrated projection of the charge density onto the xy-plane showing 7 adjacent particle bunches. Adaptive mesh refinement with charge density threshold
1×10−6 C/m3 (top left), 1×10−7 C/m3 (top right), 1×10−8 C/m3 (bottom left), 1×10−9 C/m3 (bottom right). Plotted with an own extension of the yt package [26].

4.1.3. Electric field
Let E ∈ Sp be the electric field in particle space Sp and E∗ ∈ Sc

the corresponding electric field vector in computation space Sc ,
then they relate as

E =
1
s2

E∗. (4)

Proof. According to Gauss’ law the electric field is the derivative
of the electrostatic potential. Thus, an additional s−1 contributes
to the transformation, therefore,

E = s1−dE∗

that coincides with (4) in 3 dimensions. □

4.2. Adaptive mesh refinement policies

Besides the regrid function each AMR module implements
the charge deposition, the particle-to-core (re-)distribution and
various refinement strategies. There are currently six refinement
policies available. Most refinement strategies are directly con-
nected to particle properties since it is desirable to increase the
spatial resolution at their location. Natural choices of refinement
criteria are the charge density per cell, the electrostatic potential
and the electric field. They are explained in more detail below.
Other methods limit the minimum or maximum number of par-
ticles within a cell. The last tagging option refines cells based on
the momentum of particles. While the first three methods refine
the mesh based on the grid data, the latter methods use particle
information directly. All methods apply a user-defined threshold
λ in order to control the mesh refinement. This threshold denotes
either the minimum charge density per cell

|ρ l
i,j,k| ≥ λ, (5)

or a scale factor λ ∈ [0, 1] in order to refine every grid cell (i, j, k)
on a level l that satisfies

|φl
i,j,k| ≥ λmax

i,j,k
|φl
|

or

|E l
w;i,j,k| ≥ λmax

i,j,k
|E l

w|,

in case of the electrostatic potential φ or the electric field com-
ponents Ew with w ∈ {x, y, z}, respectively. The charge density in
Eq. (5) is scaled in order to account for the domain transformation
as previously mentioned and explained in detail in Section 4.1.
Examples of AMR based on the charge density, potential and
electric field with various thresholds are shown in Figs. 3–5,
respectively.

5. Adaptive geometric multigrid

This section describes the algorithm of the adaptive geometric
multigrid (AGMG) according to [13,27] and its implementation
with the second generation packages of Trilinos, i.e. Tpetra [14],
Amesos2 and Belos [15], MueLu [16,17] and Ifpack2 [18]. A cell-
centred implementation is also presented in [28]. In opposite to
previous implementations the one presented here is hardware
independent thanks to the aforementioned Trilinos packages
that have the Kokkos [9,10] library as backend. Another ben-
efit is the convenient exchange of kernels such as smoothers
(e.g. Gauss–Seidel or Jacobi) provided by Ifpack2 or linear solvers
of Belos, Amesos2 and MueLu. The sparse matrices and vectors are
instances of Tpetra classes.

5.1. Coarse–fine interface

AGMG is a special variant of the classical geometric multigrid
since not all levels cover the full domain Ω = Ω0 (cf. Fig. 1). At
interfaces between subsequent levels ∂Ω l,l+1 the elliptic matching
condition (i.e. Neumann and Dirichlet boundary condition) must
be satisfied in order to ensure continuity of the solution. This
condition is met by flux differencing

Llφ(x) =
3∑

d=1

f (x+ 1
2h

l
ded)− f (x− 1

2h
l
ded)

hl
d

+ O
(
(hl

d)
2) , (6)

M. Frey, A. Adelmann and U. Locans / Computer Physics Communications 247 (2020) 106912 5

Fig. 4. Integrated projection of the electrostatic potential onto the xy-plane showing 7 adjacent particle bunches. Adaptive mesh refinement based on the electrostatic
potential with thresholds λ from left to right and top to bottom: 0.25, 0.5, 0.75 and 0.95. Plotted with an own extension of the yt package [26].

Fig. 5. Integrated projection of the electric field component Ex onto the xy-plane showing 7 adjacent particle bunches. Adaptive mesh refinement based on the
electric field components with thresholds λ from left to right and top to bottom: 0.25, 0.5, 0.75 and 0.95. Plotted with an own extension of the yt package [26].

with mesh spacing hl
d a unit vector ed where either

f (x+
1
2
hl
ded) =

φ(x+ hl
ded)− φ(x)
hl
d

,

f (x−
1
2
hl
ded) =

φ(x)− φ(x− hl
ded)

hl
d

(7)

on Ω l or Eq. (8) which is given in Box I with d+, d− ∈ {1, 2, 3}\{d}
and d+ ̸= d− at the interface ∂Ω l,l+1, i.e. the average flux across

the boundary where a mesh refinement ratio (cf. Eq. (2)) of rd =
2 ∀d ∈ {1, 2, 3} is assumed. In case of a cell without adjacent
finer cells the flux differencing reduces to the usual second order
Laplacian discretisation

Llφ(x) =
3∑

d=1

φ(x+ hl
ded)− 2φ(x)+ φ(x− hl

ded)
(hl

d)2
+O

(
(hl

d)
2) . (9)

An illustration of the stencil of Eq. (6) with fluxes computed
either by Eq. (7) or Eq. (8) is shown in Fig. 6. In order to simplify

6 M. Frey, A. Adelmann and U. Locans / Computer Physics Communications 247 (2020) 106912

Fig. 6. Illustration of flux differencing in 2D at a coarse–fine interface on the left side. In 2D the coarse–fine interface is 1D. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

f (x+
1
2
hl
ded) =

∑
i,j∈{± 1

4 }

φ(x+ 3
4h

l
ded + ihl

d+ed+ + jhl
d−ed−)− φ(x+ 1

4h
l
ded + ihl

d+ed+ + jhl
d−ed−)

4hl+1
d

,

f (x−
1
2
hl
ded) =

∑
i,j∈{± 1

4 }

φ(x− 1
4h

l
ded + ihl

d+ed+ + jhl
d−ed−)− φ(x− 3

4h
l
ded + ihl

d+ed+ + jhl
d−ed−)

4hl+1
d

(8)

Box I.

the representation the example is in 2D with only one coarse–
fine interface on the left side. Hence, the corresponding finite
difference stencil is given by

Llφ(x) =
f (x+ 1

2h
l
xex)− f (x− 1

2h
l
xex)

hl
x

+
f (x+ 1

2h
l
yey)− f (x− 1

2h
l
yey)

hl
y

,

where

f (x+
1
2
hl
xex) =

φ(x+ hl
xex)− φ(x)
hl
x

,

f (x−
1
2
hl
xex) =

1
2hl+1

x

(
φ

ghost
high − φhigh + φ

ghost
low − φlow

)
,

f (x+
1
2
hl
yey) =

φ(x+ hl
yey)− φ(x)
hl
y

,

f (x−
1
2
hl
yey) =

φ(x)− φ(x− hl
yey)

hl
y

.

In 3D ghost cells are expressed in terms of valid coarse and
fine cells where a two-step second order Lagrange interpolation
in 2D

φinterpolated(u, v) =
2∑

i,j=0

Li(u)Lj(v)φ(ui, vj) (10)

with

Li(x) =
(x− xk)(x− xl)
(xi − xk)(xi − xl)

(l ̸= i ̸= k ̸= l)

is performed. In 2D this corresponds to 1D Lagrange interpola-
tions. First, the intermediate points symbolised as red crosses
in Fig. 6b are computed with Eq. (10) where only non-covered
coarse cells parallel to the interface are taken. Second, the fine
cells normal to the boundary are used together with the inter-
mediate locations to obtain the ghost cells with Eq. (10).

In 3D the interface is surface perpendicular to the current
coarse–fine boundary. Depending on the surrounding cells this
surface distinguishes nine configurations to evaluate the 2D
quadratic Lagrange interpolation as shown in Fig. 7. The current
location of the interface is denoted by the black dot. Accord-
ing to Eq. (10) nine non-refined coarse cells are required for
second order interpolation denoted by the cells highlighted in
red. For this purpose a surface consisting of 25 cells is checked
perpendicular to the coarse–fine interface of interest. Ideally
none of the surrounding coarse cells is refined such that the
interpolation pattern shown in Fig. 7a is applied. The cases in
Figs. 7b to 7e indicate a mesh refinement on a single side of this
surface perpendicular to the coarse–fine interface. In case fine
cells form a corner one of the patterns Figs. 7f to 7i is appropriate.
The selection of the interpolation pattern follows a list ordered
according to Fig. 7, i.e. from left to right and top to bottom. In
order to simplify the evaluation of the interpolation scheme an
integer value is assigned to each configuration obtained by its
representation as a bit pattern (see Table 1). For this purpose all

M. Frey, A. Adelmann and U. Locans / Computer Physics Communications 247 (2020) 106912 7

Fig. 7. All possible configurations for 2D quadratic Lagrange interpolation where the red cells are used for the interpolation. The coarse–fine interface is perpendicular
to the shown cell layer (i.e. in z-direction). The black dot indicates the cell at the current coarse–fine-interface. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Table 1
Bit patterns of the second order Lagrange interpolation schemes with ordering according to Fig. 7. The second column contains the corresponding number used to
detect a pattern. An example of the conversion between grid and bits is indicated for the pattern on the right side with bit string highlighted in red.

Table 2
Bit patterns for 2D first order Lagrange interpolation (cf. Fig. 8). The first row
highlighted in red indicates the example pattern on the right side.

25 cells are given a number denoting the position of the bits.
A bit is flipped to one if the corresponding cell is not covered
by fine cells. In case none of the nine patterns is applicable the
interpolation order is reduced and thus one of the four first
order Lagrange interpolation configurations of Fig. 8 is taken
instead. The implementation follows exactly the same scheme
with conversion shown in Table 2.

5.2. Boundary conditions

Assuming the beam in vacuum and neglecting any beam
pipes the electrostatic potential converges to zero at infinity. In
order to resemble this behaviour in finite difference a common

approximation is the Asymptotic Boundary Condition (ABC) pre-
sented in [29,30] that is also denoted as radiative or open bound-
ary condition (BC). The first order approximation ABC-1 is given
by

∂φ(r)
∂r
+

1
r
φ(r) = O(r−3). (11)

Instead to spherical coordinates a formulation in Cartesian coor-
dinates is applied for example in [31–33]. In spherical coordi-
nates the nth order approximation (ABC-n) is easily evaluated by⎛⎝ n∏

j=1

(
∂

∂r
+

2j− 1
r

)⎞⎠φ(r) = O(r1−2n),

where the product is computed in decreasing order and n ∈ N.
The implementation presented in this article uses Robin boundary
conditions to approximate open boundaries. The formula looks
similar to Eq. (11) except that the radial derivative is replaced by
a normal derivative w.r.t. the mesh boundary, i.e. [21]

∂φ

∂n
+

1
d
φ = 0 (12)

where d > 0 is an artificial distance. The condition is discretised
using central difference. In addition to open BCs according to
Eq. (12) the solver presented here allows to impose homogeneous
Dirichlet and periodic BCs at the mesh (or physical) boundaries.

8 M. Frey, A. Adelmann and U. Locans / Computer Physics Communications 247 (2020) 106912

Fig. 8. All possible configurations for 2D linear Lagrange interpolation at which the red cells are used to build the Lagrange coefficients. The black dot indicates the
cell at the current coarse–fine-interface. The interface is perpendicular to the shown cell layer. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

5.3. Algorithm and implementation details

Following the notation of [13,27], the full domain Ω is given
by

Ω =

lmax∑
l=0

Ω l
− P(Ω l+1),

where the projection P from level l + 1 to level l satisfies
P(Ω l+1) ⊂ Ω l. Due to the properties of the refinement Poisson’s
equation is described by

Lcompφ = −
ρ

ε0
on Ω

with composite Laplacian operator Lcomp that considers only non-
refined regions of each level. The full algorithm is illustrated in
matrix notation in Alg. 2 to Alg. 3. It performs a V-cycle in the
residual correction formulation with pre- and post-smoothing of
the error. The iterative procedure stops when the lp-norm of the
residual of all levels with p ∈ {1, 2,∞} is smaller than the
corresponding right-hand side norm. Since AMReX assigns the
grids to cores independent of the underlying level distribution,
the implementation provides special matrices, i.e. Bl

crse and Bl
fine,

to handle the coarse–fine-interfaces. Thus, each AMR level stores
up to ten matrices and four vectors represented by Tpetra objects.
These are the composite Laplacian matrix Al

comp, the Laplacian ma-
trix assuming no-finer grids Al

nf , the coarse boundary matrix Bl
crse

and fine boundary matrix Bl
fine, the restriction and interpolation

matrices Rl and I l, respectively, the gradient matrices Gl and the
matrix to get all uncovered cells U l. The vectors per level are
the charge density ρ l, electrostatic potential φl, residual r l and
error el. Whereas the vectors span the whole level domain, some
matrices only cover a subdomain or carry additional information
for the coarse–fine interfaces as shown in Fig. 9. The coarse
and fine boundary matrices encompass one side of the Lagrange
interpolation stencil that is completed by the Laplacian matrices.
In case of the finest level the composite and no-fine Laplacian
matrices coincide.

The pre- and post-relaxation steps on line 8 and 16, respec-
tively, of Alg. 3 use the algorithms provided by Ifpack2 (e.g. Gauss–
Seidel, Jacobi, etc.). The linear system of equations on the coarsest
level (Alg. 3, line 20) is either solved by direct solvers available
via Amesos2 or iterative solvers of Belos. Furthermore, an inter-
face to MueLu allows Smoothed Aggregation Algebraic Multigrid
(SAAMG) as bottom solver.

Algorithm 1 Residual evaluation on the composite domain
Input: Level l ≥ 0
Output: Updated residual r l on the composite domain
1: function Residual(l)
2: if l = lmax then
3: r l ← ρ l

− Al
nf φ

l
− Bl

crseφ
l−1

4: else
5: r l ← U lρ l

− U l
·
(
Al
compφ

l
+ Bl

crseφ
l−1
+ Bl

fineφ
l+1
)

6: end if
7: end function

Algorithm 2 Main loop of AGMG
Input: Charge density ρ, electrostatic potential φ, electric field E and finest level

lmax
Output: Electrostatic potential φ and electric field E
1: function Solve(ρ, φ, E, lmax)
2: for l = 0 to lmax do
3: Residual(l) // Initialise residual
4: end for
5: i← 0
6: while i < imax ∧ ∃l ∈ [0, lmax] : ||r l||p> ε||ρ l

||p do // p ∈ {1, 2,∞}
7: Relax(lmax) // Start of V-cycle
8: for l = 0 to lmax do
9: Residual(l) // Update residual

10: end for
11: i← i+ 1
12: end while
13: for l = lmax − 1 to 0 do
14: φl

← U lφl
+ Rlφl+1 // Average down

15: end for
16: for l = 0 to lmax do
17: for d = 0 to 3 do
18: El

d ←−G
l
dφ

l // Evaluate electric field
19: end for
20: end for
21: end function

Algorithm 3 Residual correction V-Cycle
Input: Level l ≥ 0
Output: Electrostatic potential φ

1: function Relax(l)
2: if l = lmax then
3: r l ← ρ l

− Al
nf φ

l
− Bl

crseφ
l−1

4: end if
5: if l > 0 then
6: φl

save ← φl

7: el−1 ← 0
8: Smooth(el, r l) // Pre-smooth: Gauss–Seidel, Jacobi, ...
9: φl

← φl
+ el

10: r l−1 ← Rl−1
·
(
r l − Al

nf e
l
− Bl

crsee
l−1
)

// Restrict on covered domain
11: r l−1 ← U l−1ρ l−1

−Al−1
compφ

l−1
−Bl−1

crseφ
l−2
−Bl−1

fineφ
l // Uncovered domain

12: Relax(l− 1)
13: el ← I lel−1 // Prolongation / Interpolation
14: r l ← r l − Al

nf e
l
− Bl

crsee
l−1

15: δel ← 0
16: Smooth(δel, r l) // Post-smooth: Gauss–Seidel, Jacobi, ...
17: el ← el + δel
18: φl

← φl
save + el

19: else
20: Ae0 = r0 // Solve linear system of equations
21: φ0

← φ0
+ e0

22: end if
23: end function

6. Poisson solver validation

The Poisson solver is validated using three different exam-
ples. First, the preservation of symmetry is tested. Second, a
comparison with the analytical solution of a uniformly charged
sphere in free space is shown. Although AMR is not turned on
for a single-bunch simulation in the real application, it is nev-
ertheless a good mini-app to check for any discontinuities at the
coarse–fine interfaces among levels. In a third example the solver
is validated by means of the built-in Poisson multi-level (ML)

M. Frey, A. Adelmann and U. Locans / Computer Physics Communications 247 (2020) 106912 9

Fig. 9. Cell domain occupied by matrices. Red: Usual cell domain; Green: Physical / mesh boundary; Blue: Fine contribution of Lagrange interpolation; Violet: Coarse
contribution of Lagrange interpolation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

solver of AMReX where 11 Gaussian-shaped bunches are placed
in a chain using Dirichlet boundary conditions in the computation
domain mimicking a multi-bunch simulation in high intensity
cyclotrons as studied in [19]. The last two tests use the charge
density to obtain the mesh refinements with threshold λ =
1 fC/m3 (cf. Eq. (5) in Section 4.2).

All line and projection plots are generated with an own exten-
sion of the yt package [26]. In the following, a regular PIC model
with a uniform single-level mesh, i.e. without refinement, is an
AMR simulation of at most level zero.

6.1. Symmetry conservation

In order to check symmetry preservation we initialise a three
level problem where each level covers the centred region as
shown in Fig. 10a. At each level, the grid cells are assigned to
the same charge density value, starting at 1 C/m3 on level zero
and increasing by 0.5C/m3 on each subsequent level. There-
fore, cutting a line through the centre of the domain yields a
perfectly symmetric electrostatic potential and anti-symmetric
electric field components mirrored at the centre. According to Fig.
10b, the symmetry is preserved with absolute errors in the order
of magnitude of machine precision and thus negligible.

6.2. Uniformly charged sphere in free space

In this mini-app 106 particles are randomly picked within a
sphere of radius R = 5 mm centred at origin. In order to simplify

comparison to the analytical solution

E(r) =
Q

4πϵ0

{
r−2, r > R
R−3r, r ≤ R,

φ(r) =
Q

4πϵ0

{
r−1, r > R
(2R)−1 · (3− r2R−2), r ≤ R,

each particle carries a charge of q = 4πϵ0R2
· 10−2 C. Thus,

the peak value of the electric field is 104 V/m and 75 V for the
potential. The computation is performed using a base grid of 363

grid points and 2 refined levels. The mesh is increased by δ = 20 %
compared to the computation domain (cf. Section 4.1). The line
plots of Fig. 11 show the results for various artificial distances
d of Eq. (12). The solution with distance d = 1.7 agrees well
with the analytical solution. As expected the potential deviates at
the boundaries from the analytical solution due to the numerical
approximation of the open boundaries. The integrated projections
onto the xy-plane of the electrostatic potential and the electric
field component Ex are shown in Fig. 12.

6.3. 11 Gaussian-shaped bunches

In this mini-app the newly implemented solver is compared
to the Poisson solver of AMReX. Each bunch is initialised with
106 macro particles of charge 0.1 fC. The particles per bunch
are picked using a one-dimensional Gaussian distribution per
dimension with mean µy = µz = 0 m and standard deviation

10 M. Frey, A. Adelmann and U. Locans / Computer Physics Communications 247 (2020) 106912

Fig. 10. Charge density and absolute error in symmetry of electric field components and electrostatic potential. Starting at a charge density of 1 C/m3 on level zero
(full domain), it is incremented by 0.5C/m3 on subsequent higher levels.

Fig. 11. Comparison of the analytical and numerical solution of a uniformly charged sphere in free space with various artificial distances d of the open boundary
condition (cf. Eq. (12)). The lines in (b) coincide.

σy = σz = 5 mm. In horizontal direction the standard deviation
is σx = 1.5 mm with a mean shift of 4 cm to the neighbouring
bunches. The problem is solved on a 1443 base grid and 2 levels
of refinement. At the mesh boundaries the Dirichlet boundary
condition ∂φ = 0 is imposed. The mesh is increased by δ = 10 %
as explained in Section 4.1. As indicated by the line plots of Fig. 13
both solutions agree. The potential has a maximum absolute error
0.022V that corresponds to a maximum relative error of 0.51%.

7. Neighbouring bunch simulation

As initially stated the new AMR feature in OPAL is mainly
developed to study neighbouring bunch simulations (cf. Fig. 3)
in high intensity cyclotrons [19]. This type of simulation in-
jects a new particle bunch after every turn. The computation

domain therefore increases over time, resulting in a decrease
in resolution in regular PIC. To overcome this issue the domain
must be extremely finely discretised, at the expense of a high
memory consumption and a waste of computing resources in
regions without particles. In this section we illustrate the benefit
of AMR over regular PIC w.r.t. memory and accuracy using a
simplified model of the PSI Ring cyclotron. The simulation inte-
grates either 5, 7, 9 or 11 neighbouring bunches each with 105

or 106 particles over one turn using 360 steps. In AMR mode
the charge density per cell is used as refinement criterion (cf.
Section 4.2) with cell threshold λ = 1 nC/m3. The AMR hierarchy
is updated after every tenth integration step. All simulations have
an enlarged mesh of δ = 20 % compared to the computation
domain. Poisson’s equation is solved in a box with dimension
[−1, 1] × [−0.75, 0.75] × [−0.75, 0.75] to take into account the

M. Frey, A. Adelmann and U. Locans / Computer Physics Communications 247 (2020) 106912 11

Fig. 12. Integrated projection plots onto the xy-plane of the electrostatic potential and its electric field component Ex .

Fig. 13. Line plots of the electrostatic potential and electric field of the multi-bunch test example.

inhomogeneity of the problem. At its boundaries we apply Robin
BC (cf. Eq. (12)) with d = 1.7.

The results are compared to the single-level execution where
we use the root mean square (rms) beam size, i.e.

σw =

√
⟨w2⟩ (13)

and the beam-profile parameter [34], which is a statistical mea-
sure to determine the proportion of halo particles in a beam,
i.e.

ξw =
⟨w4
⟩

⟨w2⟩2
, (14)

where ⟨wn
⟩ denotes the nth moment of the particle distribution

in coordinate w ∈ {x, y, z}. In Figs. 14 and 16 are the rms
beam sizes and in Figs. 15 and 17 the beam-profile parameters of
the centre bunch in a simulation of 5 and 11 adjacent bunches,
respectively. The result of regular PIC with 5123 grid points is
compared to two AMR simulations with either 643 grid points
on the coarsest level and three levels of refinement or 1283 grid
points on the coarsest level and two levels of refinement. All three

simulations have therefore the same resolution on the finest grid.
The halo parameters and rms beam sizes have an absolute error
below O(10−5) compared to the regular PIC model. As observed in
Fig. 18 and Table 5, however, the average resident set size (RSS),
i.e. the amount of occupied physical memory, per MPI-process is
on average at least four times smaller with AMR than FFT PIC. All
simulations ran with 36 MPI-processes.

Besides the memory benefit, AMR reduces also the time to
solution as visualised in Fig. 19. The detailed timing results of
the Poisson solver and fourth order Runge–Kutta integration for
5 and 11 neighbouring bunches are shown in Tables 3 and 4.
As expected, the particle integration grows in proportion to the
increase in particles per bunch. The timings indicate that possible
particle load imbalances do not harm the performance of the AMR
PIC models significantly since the computation of the potential
and electric field consume at least 87.7% and 63.2% in case of 105

and 106 particles per bunch, respectively. Overall, the runtime of
the shown AMR configurations is at least 62.5% shorter compared
to FFT PIC.

The particle load balancing is quantified as the average num-
ber of particles per MPI-process ⟨Np⟩s over all integration steps s

12 M. Frey, A. Adelmann and U. Locans / Computer Physics Communications 247 (2020) 106912

Fig. 14. Evolution of the rms beam size (cf. Eq. (13)) of the centre bunch in a simulation of 5 adjacent bunches and the absolute error of AMR models to the
reference simulation with uniform mesh of 5123 grid points (Uniform-512). On the finest level all three simulations have the same mesh resolution.

Fig. 15. Evolution of the beam-profile parameters (cf. Eq. (14)) of the centre bunch in a simulation of 5 adjacent bunches and the absolute error of AMR models to
the reference simulation with uniform mesh of 5123 grid points (Uniform-512). On the finest level all three simulations have the same mesh resolution.

Table 3
Detailed timing results (max. CPU time) of the Poisson solver and time integration with fourth order Runge–Kutta
(RK-4) for 5 and 11 neighbouring bunches (nbs) of 105 macro particles each. The percentages are w.r.t. the total
runtimes shown in the last two columns.
PIC model Poisson timing (s) RK-4 timing (s) Total timing (s)

5 nbs 11 nbs 5 nbs 11 nbs 5 nbs 11 nbs

Amr-64 1 103 (95.3%) 762 (87.7%) 7.0 (0.6%) 15.5 (1.8%) 1 157 869
Amr-128 1 659 (96.8%) 1296 (92.0%) 8.5 (0.5%) 18.5 (1.3%) 1 714 1 409
Uniform-512 20 420 (99.7%) 19100 (99.1%) 33.0 (0.2%) 76.3 (0.4%) 20 490 19 270
FFT-512 9 325 (98.2%) 9142 (97.8%) 5.4 (0.1%) 11.8 (0.1%) 9 500 9 345

divided by the total number of particles in simulation Nt , i.e.
⟨Np⟩s

Nt
.

In the best case all MPI-processes have Nt/Pt particles during
integration where Pt is the total number of processes. Figs. 20

and 21 show the number of cores that deviate from the optimum
particle count within a few percent. The load balancing between
105 and 106 particles per bunch does not differ significantly. A
similar observation is done in Figs. 22 and 23 where the optimal
number of grid points among the MPI-processes is evaluated.

M. Frey, A. Adelmann and U. Locans / Computer Physics Communications 247 (2020) 106912 13

Fig. 16. Evolution of the rms beam size (cf. Eq. (13)) of the centre bunch in a simulation of 11 adjacent bunches and the absolute error of AMR models to the
reference simulation with uniform mesh of 5123 grid points (Uniform-512). On the finest level all three simulations have the same mesh resolution.

Fig. 17. Evolution of the beam-profile parameters (cf. Eq. (14)) of the centre bunch in a simulation of 11 adjacent bunches and the absolute error of AMR models
to the reference simulation with uniform mesh of 5123 grid points (Uniform-512). On the finest level all three simulations have the same mesh resolution.

Table 4
Detailed timing results (max. CPU time) of the Poisson solver and time integration with fourth order Runge–Kutta
(RK-4) for 5 and 11 neighbouring bunches (nbs) of 106 macro particles each. The percentages are w.r.t. the total
runtimes shown in the last two columns.
PIC model Poisson timing (s) RK-4 timing (s) Total timing (s)

5 nbs 11 nbs 5 nbs 11 nbs 5 nbs 11 nbs

Amr-64 1 777 (76.9%) 2 225 (63.9%) 73.89 (3.2%) 164.7 (4.7%) 2 310 3 480
Amr-128 2 070 (78.3%) 2 300 (63.2%) 71.5 (2.7%) 161.9 (4.4%) 2 644 3 638
Uniform-512 20 750 (96.3%) 19 240 (90.2%) 334.3 (0.2%) 765.8 (3.6%) 21 540 21 340
FFT-512 8 978 (96.1%) 9 032 (93.0%) 52.72 (0.6%) 118.0 (1.2%) 9 343 9 712

8. Performance benchmark

The performance benchmark is done on the multicore parti-
tion of Piz Daint, a supercomputer at the Swiss National Super-
computing Centre (CSCS). The nodes on the multicore partition

consist of two Intel Xeon E5-2695 v4 @2.10 GHz (2 × 18 cores,
64/128 GB RAM) processors [35]. The benchmark on the GPU
partition of Piz Daint confirmed the hardware portability of the
new solver. However, the data transfer between CPU (Central
Processing Unit) and GPU as well as the launching of single

14 M. Frey, A. Adelmann and U. Locans / Computer Physics Communications 247 (2020) 106912

Fig. 18. Average resident set size (RSS) in Gibibyte (GiB) per MPI-process with 5 (top left), 7 (top right), 9 (bottom left) and 11 (bottom right) neighbouring bunches.
Each bunch consists of 105 macro particles. All simulations were run with 36 MPI-processes.

Fig. 19. Total simulation CPU time with 5 (top left), 7 (top right), 9 (bottom left) and 11 (bottom right) neighbouring bunches. A bunch consists either of 105 or
106 macro particles. All simulations were run with 36 MPI-processes. The percentages on top of the bars are w.r.t. the Amr-64 (3 level) timings.

Table 5
Average resident size (RSS) in Gibibyte (GiB) per MPI-process over all 360
integration steps with 5 or 11 neighbouring bunches (nbs) and 105 or 106 macro
particles per bunch (ppb).
PIC model Avg. RSS with 5 nbs (GiB) Avg. RSS with 11 nbs (GiB)

105 ppb 106 ppb 105 ppb 106 ppb

Amr-64 0.2829 0.4386 0.2501 0.5683
Amr-128 0.3215 0.4599 0.2844 0.5900
Uniform-512 4.0524 4.1307 4.0534 4.1932
FFT-512 2.1572 2.2876 2.1757 2.3890

GPU kernels for each matrix–vector or matrix-matrix operation
of Tpetra showed a performance bottleneck which is why the
performance study presents a CPU benchmark only.

The test initialises 11 Gaussian-shaped bunches as described
in Section 6.3 with 106 macro particles of charge 0.1 fC per bunch.
The Poisson problem is solved 100 times on a three level hier-
archy (two levels of refinement) with 5763 grid points on level
zero. The particles are randomly displaced within

[
−10−3, 10−3

]
after every iteration. This represents a realistic setup for beam
dynamics simulations since the particle distribution in the bunch
rest frame changes only marginally from one integration time
step to another. Therefore, it is not necessary to re-mesh the AMR
hierarchy and thus rebuild the matrices after every time step
which gives rise to computational savings. The optimal update
frequency of the grids for neighbouring bunch simulations is
currently unknown and is not subject in this article. Nevertheless,
the computational saving is shown with two strong scalings. The

M. Frey, A. Adelmann and U. Locans / Computer Physics Communications 247 (2020) 106912 15

Fig. 20. Particle load balancing for 36 MPI-processes and 5 (top left), 7 (top right), 9 (bottom left) or 11 (bottom right) neighbouring bunches. Each bunch has 105

macro particles. The optimum is evaluated as the total number of particles divided by the number of MPI-processes.

Fig. 21. Particle load balancing for 36 MPI-processes and 5 (top left), 7 (top right), 9 (bottom left) or 11 (bottom right) neighbouring bunches. Each bunch has 106

macro particles. The optimum is evaluated as the total number of particles divided by the number of MPI-processes.

first benchmark updates the AMR hierarchy after every compu-
tation of the electrostatic potential while the latter performs a
regrid step after every tenth step. Since a constant workload per
MPI-process during an upscaling that is necessary in a fair weak
scaling cannot be guaranteed, the presented benchmark consists
of a strong scaling only.

The blue line in Fig. 24 shows the total solver time of the
100 executions. As indicated in Table 6, the setup of the matrices
(violet line), i.e. porting the AMReX mesh information to Trilinos,
as well as the evaluation of the linear system of equations on
the bottom level (grey line) with the algebraic multigrid solver of
MueLu consume together more than 77 % of the time on 14 400
cores. However, the setup time can easily be reduced with a lower
regrid frequency as previously mentioned. The matrix setup cost
in the second timing is only 14 % of the setup cost observed by the
first timing. Furthermore, the use of an algebraic multigrid solver

for the linear system of equations on the bottom level is not an
optimal choice. More suitable would be a geometric multigrid
that keeps the structure of the problem which is planned for a
future paper.

The parallel efficiency of the strong scaling of Fig. 24 is shown
in Fig. 25. The efficiency of the total solve time (blue line) drops
below 50% for 120 or 160 computing nodes. In case the AMR hier-
archy is updated after every solve, the efficiency is dominated by
the bottom solver and the matrix setup time. However, reducing
the regrid frequency shifts the dependency towards the bottom
solver. For both regriding configurations we observe an increase
in efficiency in case of 400 nodes. Since the maximum number
of grid points per dimension on level zero is set to 24, all cores
have the same amount of grid points on this level with 13 824
cores (i.e. 384 nodes) that causes the bottom solver to be more
efficient.

16 M. Frey, A. Adelmann and U. Locans / Computer Physics Communications 247 (2020) 106912

Fig. 22. Grid point load balancing for 36 MPI-processes and 5 (top left), 7 (top right), 9 (bottom left) or 11 (bottom right) neighbouring bunches. Each bunch has
105 macro particles. The optimum is evaluated as the total number of grid points per step divided by the number of MPI-processes.

Fig. 23. Grid point load balancing for 36 MPI-processes and 5 (top left), 7 (top right), 9 (bottom left) or 11 (bottom right) neighbouring bunches. Each bunch has
106 macro particles. The optimum is evaluated as the total number of grid points per step divided by the number of MPI-processes.

Table 6
Summarised AGMG timings solving Poisson’s equation 100 times on 14 400 cores (400 nodes).
It shows the timing results of two configurations. The first updates the grids after every (100×
regriding) and the second after every tenth (10× regriding) computation.
Timing CPU avg (s) Fraction (%) CPU avg (s) Fraction (%)

100 × regriding 10 × regriding

Total solve 378.72 100.00 343.66 100.00

Bottom solver 133.79 35.33 110.09 32.03
Matrix setup 159.63 42.15 22.49 6.54
Smoothing 23.23 6.13 17.59 5.12
Restriction 10.49 2.77 7.55 2.20
Bottom solver setup 2.26 0.60 1.44 0.42
Prolongation 2.09 0.55 1.60 0.46
E-field 0.67 0.18 0.61 0.18

Others 46.54 12.29 58.81 53.05

M. Frey, A. Adelmann and U. Locans / Computer Physics Communications 247 (2020) 106912 17

Fig. 24. Strong scaling performed on the multicore partition of Piz Daint (Cray XC40) with 36 cores per node (without hyperthreading). The perfect scaling (black
line) uses the total solve time with 20 nodes as reference. Left: scaling with 100× regriding; right: scaling with 10× regriding. Each marker indicates the average
CPU time per operation where the vertical line denotes the range by minimum and maximum. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 25. Parallel efficiency. The increase of efficiency from 380 to 400 nodes is due to an optimal workload on the coarsest level with 13 824 cores. Left: efficiency
with 100× regriding; right: efficiency with 10× regriding. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

9. Conclusion and outlook

In this article we presented the new adaptive mesh refinement
capability of the open-source beam dynamics code OPAL which
has been enhanced by AMReX. The new feature is supplemented
with a hardware architecture independent implementation of
a multigrid Poisson solver based on second generation Trili-
nos packages. Besides an artificial problem illustrating symmetry
preservation and a comparison with an analytically solvable prob-
lem, the Poisson solver was validated with the built-in AMReX
multi-level solver. Although the structure of the mesh is lost
when going to the matrix representation, the solver shows good
scalability on CPUs with a parallel efficiency between 50% and
60% on 14,400 cores depending on the AMR regrid frequency.
The timings indicate that the matrix setup and the bottom linear
system solver require 77% of the total solver time. The former can
be reduced by updating the mesh less frequently. The latter might
be decreased by replacing the smoothed aggregation algebraic
multigrid solver of MueLu with a structured aggregation proce-
dure, a real geometric multigrid solver or a FFT solver which is
subject to future research. Thanks to the hardware portability the

solver runs on any backend that is supported by Kokkos. However,
due to single kernel launches for each matrix–vector operation,
the solver is not yet competitive on GPUs.

A small example of the PSI Ring cyclotron demonstrated the
benefit of AMR over regular PIC models w.r.t. time to solution and
memory consumption at a given accuracy. The presented bench-
mark shows that AMR requires about four times less memory
and the time to solution is at least 62.5% times shorter than a
comparable simulation with the integrated FFT solver of OPAL.
Therefore, the technique of adaptive mesh refinement will enable
large-scale multi-bunch simulations in high intensity cyclotrons
at higher grid resolution in order to more accurately quantify
the effect of radially neighbouring bunches on halo formation
and evolution. In future studies AMR might also be applied to
simulations of FFA (Fixed-Field Alternating Gradient) accelerators.

Acknowledgements

Many thanks to the Center for Computational Sciences and
Engineering (CCSE) at Lawrence Berkeley National Laboratory
(LBNL), in particular A. S. Almgren, A. Myers and W. Zhang. The

18 M. Frey, A. Adelmann and U. Locans / Computer Physics Communications 247 (2020) 106912

authors appreciate also the support of P. Arbenz, Dan. F. Martin,
K. D. Devine and C. Siefert in the development of the multigrid
solver. Furthermore, we thank the Swiss National Supercomput-
ing Centre (CSCS) for providing the necessary computer time on
Piz Daint. This project is funded by the Swiss National Science
Foundation (SNSF) under contract number 200021_159936.

References

[1] R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles, Taylor
& Francis, Inc., Bristol, PA, USA, 1988.

[2] A. Adelmann, U. Locans, A. Suter, Comput. Phys. Comm. 207 (2016) 83–90.
[3] M.J. Berger, J. Oliger, J. Comput. Phys. 53 (3) (1984) 484–512.
[4] M. Berger, P. Colella, J. Comput. Phys. 82 (1) (1989) 64–84.
[5] J. Hittinger, J. Banks, J. Comput. Phys. 241 (2013) 118–140.
[6] V. Kolobov, R. Arslanbekov, J. Phys. Conf. Ser. 719 (1) (2016) 012020.
[7] J.-L. Vay, A. Almgren, J. Bell, L. Ge, D. Grote, M. Hogan, O. Kononenko, R.

Lehe, A. Myers, C. Ng, J. Park, R. Ryne, O. Shapoval, M. Thévenet, W. Zhang,
Nucl. Instrum. Methods Phys. Res. A (2018).

[8] Trilinos, https://github.com/trilinos/Trilinos, release: 12.14.1, 2019.
[9] H.C. Edwards, C.R. Trott, D. Sunderland, J. Parallel Distrib. Comput. 74 (12)

(2014) 3202–3216, https://doi.org/10.1016/j.jpdc.2014.07.003, Domain-
Specific Languages and High-Level Frameworks for High-Performance
Computing.

[10] H.C. Edwards, D. Sunderland, V. Porter, C. Amsler, S. Mish, Sci. Program.
20 (2) (2012) 89–114, https://doi.org/10.3233/SPR-2012-0343.

[11] A. Adelmann, P. Calvo, M. Frey, A. Gsell, U. Locans, C. Metzger-Kraus, N.
Neveu, C. Rogers, S. Russell, S. Sheehy, J. Snuverink, D. Winklehner, arXiv
e-prints, arXiv:1905.06654, 2019.

[12] AMReX, https://ccse.lbl.gov/AMReX, release: 18.07, 2019.
[13] D.F. Martin, An Adaptive Cell-centered Projection Method for the Incom-

pressible Euler Equations (PhD thesis), University of California at Berkeley,
1998.

[14] C.G. Baker, M.A. Heroux, Sci. Program. 20 (2) (2012) 115–128.
[15] E. Bavier, M. Hoemmen, S. Rajamanickam, H. Thornquist, Sci. Program. 20

(2012) Issue 3.

[16] L. Berger-Vergiat, C.A. Glusa, J.J. Hu, M. Mayr, A. Prokopenko, C.M.
Siefert, R.S. Tuminaro, T.A. Wiesner, MueLu User’s Guide, Technical Report
SAND2019-0537, Sandia National Laboratories, 2019.

[17] L. Berger-Vergiat, C.A. Glusa, J.J. Hu, M. Mayr, A. Prokopenko, C.M. Siefert,
R.S. Tuminaro, T.A. Wiesner, MueLu multigrid framework, http://trilinos.
org/packages/muelu, 2019.

[18] A. Prokopenko, C.M. Siefert, J.J. Hu, M. Hoemmen, A. Klinvex, Ifpack2 User’s
Guide 1.0, Technical Report SAND2016-5338, Sandia National Labs, 2016.

[19] J.J. Yang, A. Adelmann, M. Humbel, M. Seidel, T.J. Zhang, Phys. Rev. ST
Accel. Beams 13 (2010) 064201.

[20] V. Rizzoglio, A. Adelmann, C. Baumgarten, M. Frey, A. Gerbershagen, D.
Meer, J.M. Schippers, Phys. Rev. Accel. Beams 20 (2017) 124702.

[21] A. Adelmann, P. Arbenz, Y. Ineichen, J. Comput. Phys. 229 (12) (2010)
4554–4566.

[22] M. Toggweiler, A. Adelmann, P. Arbenz, J. Yang, J. Comput. Phys. 273 (2014)
255–267.

[23] J.L. Vay, D.P. Grote, R.H. Cohen, A. Friedman, Comput. Sci. Discov. 5 (1)
(2012) 014019.

[24] P. Colella, P.C. Norgaard, J. Comput. Phys. 229 (4) (2010) 947–957.
[25] J.D. Jackson, Classical Electrodynamics, third ed., John Wiley & Sons, Inc.,

New York, 1999.
[26] M.J. Turk, B.D. Smith, J.S. Oishi, S. Skory, S.W. Skillman, T. Abel, M.L.

Norman, Astrophys. J. Suppl. 192 (2011) 9.
[27] D.F. Martin, K.L. Cartwright, Solving Poisson’s equation using adaptive

mesh refinement, Technical Report UCB/ERL M96/66, Univ. Calif. Berkeley,
1996.

[28] A.S. Almgren, J.B. Bell, P. Colella, L.H. Howell, M.L. Welcome, J. Comput.
Phys. 142 (1) (1998) 1–46.

[29] B. Alvin, T. Eli, Comm. Pure Appl. Math. 33 (6) (1980) 707–725.
[30] A. Bayliss, M. Gunzburger, E. Turkel, SIAM J. Appl. Math. 42 (2) (1982)

430–451.
[31] A. Khebir, A.B. Kouki, R. Mittra, IEEE Trans. Microw. Theory Tech. 38 (10)

(1990) 1427–1432.
[32] R.K. Gordon, S.H. Fook, IEEE Trans. Microw. Theory Tech. 41 (8) (1993)

1280–1286.
[33] D. Biswas, G. Singh, R. Kumar, Phys. Plasmas 22 (9) (2015) 093119.
[34] T.P. Wangler, K.R. Crandall, Beam Halo in Proton Linac Beams, in:

International Linac Conference, vol. 20, 2000.
[35] CSCS, https://www.cscs.ch/computers/piz-daint/, (visited: 8.10.18), 2018.

http://refhub.elsevier.com/S0010-4655(19)30290-5/sb1
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb1
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb1
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb2
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb3
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb4
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb5
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb6
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb7
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb7
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb7
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb7
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb7
https://github.com/trilinos/Trilinos
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.3233/SPR-2012-0343
http://arxiv.org/abs/1905.06654
https://ccse.lbl.gov/AMReX
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb13
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb13
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb13
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb13
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb13
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb14
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb15
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb15
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb15
http://trilinos.org/packages/muelu
http://trilinos.org/packages/muelu
http://trilinos.org/packages/muelu
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb19
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb19
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb19
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb20
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb20
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb20
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb21
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb21
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb21
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb22
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb22
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb22
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb23
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb23
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb23
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb24
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb25
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb25
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb25
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb26
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb26
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb26
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb28
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb28
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb28
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb29
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb30
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb30
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb30
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb31
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb31
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb31
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb32
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb32
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb32
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb33
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb34
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb34
http://refhub.elsevier.com/S0010-4655(19)30290-5/sb34
https://www.cscs.ch/computers/piz-daint/

	On architecture and performance of adaptive mesh refinement in an electrostatics Particle-In-Cell code
	Introduction
	The OPAL library
	The AMReX library
	Adaptive mesh refinement in the OPAL library
	Domain transform
	Particle coordinate
	Electrostatic potential
	Electric field

	Adaptive mesh refinement policies

	Adaptive geometric multigrid
	Coarse–fine interface
	Boundary conditions
	Algorithm and implementation details

	Poisson solver validation
	Symmetry conservation
	Uniformly charged sphere in free space
	11 Gaussian-shaped bunches

	Neighbouring bunch simulation
	Performance benchmark
	Conclusion and outlook
	Acknowledgements
	References

