
PHYSICAL REVIEW B 99, 184445 (2019)

Model of spin liquids with and without time-reversal symmetry
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We study a model in (2 + 1)-dimensional space-time that is realized by an array of chains, each of which
realizes relativistic Majorana fields in (1 + 1)-dimensional space-time, coupled via current-current interactions.
The model is shown to have a lattice realization as an array of coupled quantum spin-1/2 ladders. We study this
model both in the presence and in the absence of time-reversal symmetry within a mean-field approximation.
We find regimes in coupling space where Abelian and non-Abelian spin-liquid phases are stable. In the case
when the Hamiltonian is time-reversal symmetric, we find regimes where gapped Abelian and non-Abelian
chiral phases appear as a result of spontaneous breaking of time-reversal symmetry. These gapped phases are
separated by a discontinuous phase transition. More interestingly, we find a regime for which a nonchiral gapless
non-Abelian spin liquid is stable. The excitations in this regime are described by relativistic Majorana fields in
(2 + 1)-dimensional space-time, much as those appearing in the Kitaev honeycomb model but here emerging in
a model of coupled spin ladders that do not break the SU (2) spin-rotation symmetry.
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I. MOTIVATION AND SUMMARY OF RESULTS

The Kalmeyer-Laughlin chiral spin liquid [1] was the first
example of a connection between the physics of the fractional
quantum Hall (FQH) effect and that of frustrated quantum
magnets that do not order through the spontaneous breaking of
a symmetry. Such chiral spin liquids present exotic features,
e.g., a ground-state degeneracy on the torus—a defining at-
tribute of topological order [2]. The Kitaev honeycomb model
[3] presents another example of a chiral spin liquid when a
gap is opened by the addition of a magnetic field. The Kitaev
model displays, in a regime of parameters, non-Abelian topo-
logical order, i.e., quasiparticles obey non-Abelian braiding
statistics, as in the Moore-Read FQH states [4].

Recently, coupled-wire constructions pioneered by Kane
and collaborators [5–9] have provided a complementary ap-
proach to the construction of topological ordered states, in
particular, both Abelian and non-Abelian FQH states. These
constructions allow one to utilize the powerful machinery
of (1 + 1)-dimensional conformal field theory (CFT) to de-
scribe individual quantum wires at low energies, which are
then coupled to their neighbors under periodic boundary
conditions to gap the bulk degrees of freedom of the re-
sulting two-dimensional system. Gapless chiral modes, de-
scribed by chiral CFTs [10], are rather naturally obtained
in these coupled-wire constructions under open boundary
conditions.

Most of the focus of coupled-wire constructions has been
on electronic systems with a quantized (charge) Hall re-
sponse. However, one may also use, instead of quantum
wires, quantum spin chains or ladders, which can also be
described by CFTs in their gapless limits [11–16]. The result
of these coupled-wire (i.e., coupled quantum spin-1/2 lad-
der) constructions are gapped chiral spin liquids in (2 + 1)-

dimensional space-time [1,17], much as the electronic wire
constructions lead to gapped FQH states.

Within this coupled-wire approach, we presented a model
in Ref. [15] that, as we argued, displays chiral spin-liquid
phases supporting both Abelian and non-Abelian topological
orders. In that model, each quantum spin-1/2 ladder can be
fine-tuned to a quantum critical point with a central charge
of c = 2. In turn, this quantum critical point can be thought
of as the sum of four decoupled CFTs, each of which can be
described by one flavor of a gapless Majorana field carrying
the central charge c = 1/2. These four independent Majorana
fields per wire when fine-tuned to the c = 2 quantum critical
point can be arranged into a triplet and a singlet that transform
like the spin one and spin zero representations of SU (2),
respectively. These Majorana fields are local within each wire
so that quadratic terms, such as back-scattering are allowed
inside any given wire. Back-scattering between the left- and
the right-moving components of the singlet Majorana field
is nothing but a singlet mass term ms. It reduces the central
charge c = 2 to c = 3/2. Equal amplitude back-scattering
between the left- and the right-moving components of the
triplet Majorana fields is nothing but a triplet mass term mt .
It reduces the central charge c = 2 to c = 1/2. Remarkably,
the singlet and triplet masses [see Eq. (2.2)] realize a linear
combination of local two- and four-body SU (2) symmetric
spin-1/2 interactions on a quantum spin-1/2 ladder (see
Sec. IV). In this paper, we choose to fine-tune each wire (i.e.,
a quantum spin-1/2 ladder) to the c = 1/2 quantum critical
point that follows from gapping the triplet of Majorana fields.
The question we then address is the effect of switching inter-
wire interactions when each wire has been fine-tuned to its
c = 1/2 quantum critical point. Now, local interladder spin-
1/2 interactions are necessarily quartic in the Majorana fields.
They are characterized by a pair of dimensionless coupling
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FIG. 1. (a) Mean-field phase diagram as a function of the three couplings λ � 0, λ̃ � 0, and |mt|/�x for the theory defined in Eq. (2.4)
under the assumptions (2.8) [�x is a momentum cutoff that is introduced in Eq. (3.24b)]. The yellow surface represents those points in coupling
space at which a continuous mean-field transition separates two distinct gapped phases of matter: an Abelian topological order (ATO) phase
and a non-Abelian topological order (NATO) phase. The brown surface represents those points at which a discontinuous mean-field phase
transition occurs. The acronym “LR” (respectively, “RL”) refers to the chiralities of the gapless edge states, i.e., gapless edge states on the first
wire m = 1 are left handed (respectively, right handed), whereas those on the last wire m = n are right handed (respectively, left handed) when
open boundary conditions are chosen along the stacking direction of the wires. The quadrant λ = λ̃ for which Hamiltonian density (2.4) is TRS
is colored in gray. (b) For |mt/�x| � 0 and λ = λ̃ � 0, the region bounded by the vertical axis and the green colored continuous line supports
a TRS mean-field solution as the minimum of the mean-field potential with the vanishing singlet gap �s = 0 and the nonvanishing triplet gap
�t = 2|mt| �= 0 defined by Eq. (3.31). Outside of this region, TRS is spontaneously broken at the mean-field level with nonvanishing singlet
�s �= 0 and triplet �t �= 0 gaps defined by Eq. (3.31). The brown dashed line is a line of discontinuous phase transitions that separates the
mean-field snapshot of an ATO from a NATO phase.

constants λ and λ̃ defined in Eq. (2.3) that are exchanged by
the operation of time reversal. In Ref. [15], we studied the spe-
cial case of λ �= 0, λ̃ = 0 that maximally breaks time-reversal
symmetry (TRS). This limit was analyzed using mean-field
theory and a random-phase approximation that started from
an exactly solvable limit. Within these approximations, we
obtained the phase diagram of the coupled-ladder system with
its gapped Abelian and non-Abelian chiral phases. The goal of
this paper is to study the time-reversal symmetric limit λ = λ̃

by exploring the zero-temperature phase diagram for arbitrary
values of λ �= 0, λ̃ �= 0, and |mt| � 0. The main results of
this paper are summarized by the mean-field phase diagram
presented in Fig. 1.

Summary of results: The phase diagram at zero temperature

In the present paper, intrawire interactions (i.e., spin-1/2
interactions in a single quantum spin-1/2 ladder that respect
the SU (2) spin-rotation symmetry) are parametrized by the
dimensionful spin-singlet Majorana mass ms and by the di-
mensionful spin-triplet Majorana mass mt . Each wire is fine-
tuned to the quantum critical point defined by the condition
ms = 0 in this parameter space. We then imagine switch-
ing adiabatically generic interwire interactions (i.e., generic
SU (2)-symmetric interladder quantum spin-1/2 interactions)
that are encoded by a pair of Majorana quartic interactions
with the dimensionless couplings λ �= 0 and λ̃ �= 0. Because
reversal of time exchanges λ �= 0 and λ̃ �= 0, the case of λ �= λ̃

breaks explicitly TRS, whereas the case of λ = λ̃ is TRS.
When TRS holds, the existence of nonchiral spin liquids

becomes possible. Parameter space for the coupled wires is
thus three dimensional. In Fig. 1, we choose the dimensionless
couplings λ, λ̃ � 0, and |mt|/�x where the momentum cutoff
�x > 0 is of the order of the band width of the spin excitations
in the underlying quantum spin-1/2 ladder realizing a wire.

We find a rather rich phase diagram within a mean-field ap-
proximation, which we depict in Fig. 1. The mean-field phase
diagram includes gapped phases of matter supporting gapless
edge states that realize either c = 2 or c = 1/2 CFTs when
open boundary conditions are imposed. By the bulk-edge
correspondence, we infer that these mean-field gapped phases
signal chiral Abelian and chiral non-Abelian topologically
ordered quantum phases, respectively, when TRS is either
explicitly or spontaneously broken. The logic connecting a
mean-field phase diagram to a topologically ordered phase of
quantum matter through the bulk-edge correspondence is very
much the same as the one used by Read and Green [18] on the
one hand hand and by Ivanov [19] on the other hand in their
study of the braiding statistics of vortices in two-dimensional
chiral p-wave superconductors.

In the case when TRS is spontaneously broken on the plane
λ = λ̃ of Fig. 1, we find that the Abelian and non-Abelian
phases are separated by a discontinuous mean-field quantum
phase transition. Although quantum phase transitions between
distinct topological phases are often presumed to be con-
tinuous, we have discovered an example of a discontinuous
phase transition at the mean-field level. Another example of
discontinuous quantum phases transitions between topolog-
ically ordered phases of matter has been proposed for the
Kitaev honeycomb model under a magnetic field within a
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slave-particle mean-field theory and exact diagonalizations in
Ref. [20].

More interestingly, we identify a region in the three-
dimensional parameter space of Fig. 1 for which TRS remains
unbroken. The region of Fig. 1 characterized by λ = λ̃ with a
vanishing mean-field singlet gap �s = 0 describes a gapless
nonchiral spin liquid. In this region of parameter space, the
Majorana fields acquire dispersion in the direction perpen-
dicular to the ladders, yielding a pair of two-dimensional
Majorana cones. We have, thus, found an example related
to a quantum spin-1/2 lattice model in two-dimensional
space with full SU (2) spin-rotation invariance that supports
a nonchiral spin-liquid phase with gapless Majoranas as in
the phase B of the Kitaev honeycomb model [3]. However,
SU (2) spin-rotation symmetry is absent in the Kitaev hon-
eycomb model. Now, realizing the Kitaev model requires a
strong spin-orbit coupling [21,22], whereas our model does
not. We have thus demonstrated by way of example that a
gapless TRS spin-liquid phase does not require the breaking
of spin-rotation symmetry. Keeping the SU (2) spin-rotation
symmetric interactions as the dominant ones may provide
more opportunities in material science to realize quantum spin
liquids experimentally [23].

The paper is organized as follows. We present the model of
coupled Majorana fields and analyze several of its symmetries
in Sec. II. We then study the model within a mean-field treat-
ment in Sec. III. In Sec. IV, we discuss possible implications
of this mean-field phase diagram for a lattice model of coupled
spin-1/2 ladders that we propose as a regularization of the
field theory defined in Sec. II. We summarize our results in
Sec. V.

II. MODEL OF COUPLED MAJORANA FIELD THEORIES

A. Definition

Our quantum field theory (QFT) is built from four species
(labeled by μ = 0, . . . , 3) of Majorana fields whose support
is (1 + 1)-dimensional space-time. We will call this building
block a ladder. This terminology is justified by the fact that we
find in Sec. IV a quantum spin-1/2 ladder that regularizes this
quantum field theory. We then consider n-independent copies
of the Majorana quantum field theory in (1 + 1)-dimensional
space-time with the kinetic Hamiltonian density,

Ĥ0 :=
n∑

m=1

3∑
μ=0

i

2
vμ

(
χ̂

μ
L,m∂xχ̂

μ
L,m − χ̂

μ
R,m∂xχ̂

μ
R,m

)
, (2.1a)

where the velocities vμ are real valued and L, R denote
the left and right movers, respectively. The Majorana fields
(χ̂μ

M,m )∗ = χ̂
μ
M,m obey the equal-time anticommutators,

{
χ̂

μ
M,m(x), χ̂μ′

M′,m′ (x′)
} = δMM′δmm′δμμ′δ(x − x′), (2.1b)

with μ,μ′ = 0, . . . 3, M, M′ = L, R, m, m′ = 1, . . . , n, and
0 � x � Lx.

Besides the kinetic term (2.1a), we assume that
there is a back-scattering term with real-valued couplings

mμ (μ = 0, . . . , 3) inside each ladder,

Ĥintraladder :=
n∑

m=1

3∑
μ=0

imμχ̂
μ
L,mχ̂

μ
R,m. (2.2)

We then couple consecutive ladders by considering interladder
quartic interactions with real-valued coupling constants λ

and λ̃,

Ĥinterladder :=
n−1∑
m=1

(Ĥλ,m + Ĥλ̃,m ), (2.3a)

Ĥλ,m := λ

4

⎛⎝ 3∑
μ=0

χ̂
μ
L,mχ̂

μ
R,m+1

⎞⎠2

, (2.3b)

Ĥλ̃,m := λ̃

4

⎛⎝ 3∑
μ=0

χ̂
μ
R,mχ̂

μ
L,m+1

⎞⎠2

. (2.3c)

Each Ĥλ,m and Ĥλ̃,m term alone is the O(4) Gross-Neveu-
like quartic interaction.

The final Hamiltonian density is

Ĥ := Ĥ0 + Ĥintraladder + Ĥinterladder, (2.4)

with Ĥ0, Ĥintraladder, and Ĥinterladder defined in Eqs. (2.1a),
(2.2), and (2.3), respectively.

The limit λ̃ = 0 in the Hamiltonian density (2.4) was con-
sidered in Ref. [15]. This regime corresponds (with the sin-
glet mass ms = 0) to the planar region (λ � 0, λ̃ = 0, mt >

0, ms = 0) in Fig. 1 where ATO and NATO are the abbre-
viations for “Abelian topological order” and “non-Abelian
topological order“, respectively. A telltale to distinguish these
phases is the central charge c of edge states: For Abelian
phases, c is necessarily an integer; instead, if c is fractional,
the phase is necessarily non-Abelian. (Note that it is possible
to have integer c for non-Abelian phases, for instance, direct
sums of models with fractional c’s that add up to an integer.)
In our model, the signatures of these phases at the mean-
field level are the following. The edge states of a mean-field
snapshot of the ATO phase are quadruplet of right-moving
(left-moving) Majorana fermions χ̂

μ
R,1 (χ̂μ

L,n) on the first (last)
edge for μ = 0–3, yielding c = 4 × 1/2 = 2 ∈ Z. The edge
states of a mean-field snapshot of the NATO phase consist of
the singlet Majorana modes χ̂0

R,1 and χ̂0
L,n with c = 1 × 1/2 =

1/2 /∈ Z.
The goal of this paper is to study the generic case where

both λ and λ̃ are nonzero. The phase diagram in Fig. 1 is
mirror symmetric about the plane λ = λ̃, and we will be
particularly interested in the limit λ = λ̃ at which the Hamil-
tonian density (2.4) is invariant under TRS.

B. Symmetries

Reversal of time is implemented by the m-resolved antiu-
nitary Z2 transformation by which

χ̂
μ
L,m(x) �→ χ̂

μ
R,m(x), (2.5a)

χ̂
μ
R,m(x) �→ χ̂

μ
L,m(x), (2.5b)

i �→ −i (2.5c)

for any μ = 0, . . . , 3, m = 1, . . . , n, and 0 � x � Lx.
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The Hamiltonian density (2.4) has more symmetries. First,
for arbitrary values of the masses and the couplings, the
Hamiltonian density (2.4) is invariant under

χ̂
μ
M,m(x) �→ σμχ̂

μ
M,m(x), σμ = ±1 (2.6)

for any μ = 0, . . . , 3, M = L, R, m = 1, . . . , n, and 0 �
x � Lx. Second, it is also invariant under the m-resolved
(local) Z2 transformation by which

χ̂
μ
M,m(x) �→ σmχ̂

μ
M,m(x), σm = ±1 (2.7)

for any μ = 0, . . . , 3, M = L, R, m = 1, . . . , n, and 0 �
x � Lx.

Whenever the underlying lattice regularization of the
Hamiltonian density (2.4) is endowed with a global SU (2)
symmetry, we will impose the conditions,

v0 ≡ vs ≡ v, m0 ≡ ms = 0,
(2.8)

va ≡ vt ≡ v, ma ≡ mt, a = 1–3,

where s and t stand for singlet and triplet, respectively.

III. MEAN-FIELD APPROACH

A. Two auxiliary scalar fields

We will treat the interladder quartic interactions (2.3) by
performing a Hubbard-Stratonovich transformation. To this
end, we employ the Euclidean path-integral formalism and
introduce two real-valued auxiliary scalar fields φm,m+1 and
φ̃m,m+1 for m = 1, . . . , n − 1. The model (2.4) can then be
written as

Z :=
∫

D[φ, φ̃]
∫

D[χ0, χ1, χ2, χ3]e−S, (3.1a)

S :=
∫ β

0
dτ

∫ Lx

0
dx

Ly/ay∑
m=1

(Lf,m + Lb,m + Lfb,m ), (3.1b)

Lf,m := 1

2

3∑
μ=0

[
χ

μ
L,m(∂τ + ivμ∂x )χμ

L,m

+χ
μ
R,m(∂τ − ivμ∂x )χμ

R,m

] +
3∑

μ=0

imμχ
μ
L,mχ

μ
R,m,

(3.1c)

Lb,m := 1

4λ
(φm,m+1)2 + 1

4̃λ
(φ̃m,m+1)2, (3.1d)

Lfb,m :=
3∑

μ=0

1

2

( − iχμ
L,mχ

μ
R,m+1

)
φm,m+1

+
3∑

μ=0

1

2

( − iχμ
R,mχ

μ
L,m+1

)
φ̃m,m+1. (3.1e)

Here, β is the inverse temperature and ay is the spacing
between two consecutive ladders.

B. Symmetries

The action (3.1b) with λ = λ̃ is invariant under
the m-resolved antiunitary time-reversal transformation

[cf. Eq. (2.5)],

χ
μ
M,m(τ, x) �→ χ

μ

M′,m(τ, x), M �= M′,

φm,m+1(τ, x) �→ −φ̃m,m+1(τ, x), (3.2)

φ̃m,m+1(τ, x) �→ −φm,m+1(τ, x)

for any μ = 0, . . . , 3, M = L, R, m = 1, . . . , n, 0 � τ �
β, and 0 � x � Lx.

The action (3.1b) has the following additional symmetries.
First, the μ-resolved Majorana parity is conserved owing to
the symmetry of the action S (3.1b) under the Z2 transforma-
tion [cf. Eq. (2.6)],

χ
μ
M,m(τ, x) �→ σμχ

μ
M,m(τ, x), σμ = ±1 (3.3)

for any μ = 0, . . . , 3, M = L, R, m = 1, . . . , n, 0 � τ �
β, and 0 � x � Lx.

Second, the action (3.1b) is invariant under the m-resolved
Z2 transformation [cf. Eq. (2.7)],

χ
μ
M,m(τ, x) �→ σmχ

μ
M,m(τ, x), σm = ±1,

φm,m+1(τ, x) �→ σmσm+1φm,m+1(τ, x), (3.4)

φ̃m,m+1(τ, x) �→ σmσm+1φ̃m,m+1(τ, x)

for any μ = 0, . . . , 3, M = L, R, m = 1, . . . , n, 0 � τ �
β, and 0 � x � Lx.

C. Mean-field single-particle Hamiltonian

We do the mean-field approximation by which the
Hubbard-Stratonovich fields φ and φ̃ are assumed indepen-
dent of the space-time coordinates (τ, x) and the ladder
index m,

φm,m+1(τ, x) ≡ φ, φ̃m,m+1(τ, x) ≡ φ̃. (3.5)

In what follows, we will ignore sign fluctuations of these
Hubbard-Stratonovich fields φ and φ̃ since as was demon-
strated in Ref. [24] where fermions coupled to a Z2 gauge
field on a square lattice were studied, such fluctuations are
irrelevant. If so, the action from (3.1d) simplifies to

Sb :=
∫ β

0
dτ

∫ Lx

0
dx

Ly/ay∑
m=1

Lb,m = β Lx
Ly

ay

(
1

4λ
φ2 + 1

4̃λ
φ̃2

)
.

(3.6)

We proceed by imposing periodic boundary condition along
the y direction,

χ
μ
M,n+1 ≡ χ

μ
M,1 (3.7)

for M = L, R, and by performing the Fourier transformation,

Sf + Sfb :=
∫ β

0
dτ

∫ Lx

0
dx

Ly/ay∑
m=1

(Lf,m + Lfb,m )

=
∑
ω,k

3∑
μ=0

1

2

(
χ

μ

−ω,−k

)T(
iωσ̂0 + ĤMF

μ,k

)
χ

μ

ω,k, (3.8a)
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where χ
μ

ω,k := (χμ

R,ω,k, χ
μ

L,ω,k )T for each flavor μ = 0, . . . , 3,
the mean-field Majorana Hamiltonian is

ĤMF
μ,k := −vμkxσ̂3−+ sin(kyay)σ̂1+ [mμ−− cos(kyay)]σ̂2,

(3.8b)

and we have introduced the linear combinations,

± := 1
2 (φ ± φ̃) (3.8c)

for the auxiliary scalar fields. Here, σ̂1, σ̂2, and σ̂3 are Pauli
matrices, whereas σ̂0 is the 2 × 2 identity matrix.

We can diagonalize the 2 × 2 single-particle Hamiltonian
(3.8b) for each flavor μ = 0, . . . , 3. There follows eight
branches of mean-field excitations with the dispersions (we
have set ay = 1),

εμ,±(kx, ky) := ±εμ(kx, ky), (3.9a)

εμ(kx, ky) :=
√

v2
μk2

x + (mμ − − cos ky)2 + 2+ sin2 ky.

(3.9b)

We see that the eight branches fall into four pairs of
particle-hole symmetric bands. For an arbitrary value of kx

and ky, the mean-field Majorana direct gap is defined by

�μ(kx, ky) := ε+,μ(kx, ky) − ε−,μ(kx, ky)

= 2εμ(kx, ky). (3.10)

In the vicinity of (kx = 0, ky = 0) and (kx = 0, ky = π ), the
mean-field Majorana direct gaps are as follows:

�μ,(0, 0) = 2|mμ − −| = 2

∣∣∣∣mμ − φ

2
+ φ̃

2

∣∣∣∣, (3.11a)

and

�μ(0, π ) = 2|mμ + −| = 2

∣∣∣∣mμ + φ

2
− φ̃

2

∣∣∣∣, (3.11b)

respectively. The minimum of the two gap functions (3.11) is

�μ := 2||mμ| − |−|| = 2
∣∣|mμ| − 1

2 |φ − φ̃|∣∣. (3.12)

D. Linearized spectrum

The physics captured by the mean-field Majorana single-
particle Hamiltonian (3.8b) becomes more transparent upon
linearizing the latter around the gap closing points (kx, ky) =
(0, 0) and (kx, ky) = (0, π/ay), respectively. One finds the
pair of 2 × 2 Dirac-like Hamiltonians,

ĤMF
μ,kx=0+px, ky=0+py

≈ −vμ pxσ̂3 − ay+ pyσ̂1 + (mμ − −)σ̂2, (3.13a)

ĤMF
μ,kx=0+px, ky=(π/ay )+py

≈ −vμ pxσ̂3 + ay+ pyσ̂1 + (mμ + −)σ̂2. (3.13b)

Accordingly, ay+ plays the role of the Fermi velocity
in the y direction. Furthermore, we find that the single-
particle Majorana gap is 2|mμ ∓ −|, in agreement with
Eqs. (3.11a) and (3.11b). We now combine these linearized
mean-field Majorana single-particle Hamiltonian into the

4 × 4 matrix,

ĤMF,lin
μ,p :=

(
ĤMF

μ,kx=0+px, ky=0+py
02×2

02×2 ĤMF
μ,kx=0+px, ky=(π/ay )+py

)
= −vx,μ pxσ̂3 ⊗ τ̂0 − vy pyσ̂1 ⊗ τ̂3 + mμσ̂2 ⊗ τ̂0

−−σ̂2 ⊗ τ̂3, (3.14a)

where we have defined

vx,μ := vμ, vy := ay+, (3.14b)

with the triplet τ̂1, τ̂2, and τ̂3, a second set of Pauli matri-
ces, and τ̂0 as a second 2 × 2 identity matrix. This is an
anisotropic single-particle Dirac Hamiltonian. The anisotropy
enters through the two distinct Fermi velocities (3.14b) with
the velocity along the y direction emerging from the nonva-
nishing value of + for the bonding linear combination of
the Hubbard-Stratonovich fields. There are two competing
masses mμ and the antibonding linear combination − of
the Hubbard-Stratonovich fields that measures the amount by
which the mean field breaks time-reversal symmetry. These
masses compete because they multiply two 4 × 4 matrices
that commute

[σ̂2 ⊗ τ̂0, σ̂2 ⊗ τ̂3] = 0. (3.15)

The mass term mμσ̂2 ⊗ τ̂0 breaks a unitary Z2 symmetry
represented by conjugation with

Î = σ̂3 ⊗ τ̂1. (3.16)

The mass term −σ̂2 ⊗ τ̂3 breaks time-reversal symmetry that
is represented by conjugation with

T̂ = σ̂1 ⊗ τ̂1K, (3.17)

where K denotes the complex conjugation.
The competition between the mass terms mμσ̂2 ⊗ τ̂0 and

−σ̂2 ⊗ τ̂3 implies a gap closing (i.e., continuous) transition
when

|mμ| = |−|, (3.18)

that separates two single-particle insulating phases. As shown
by Haldane [25], the Chern numbers for the pair of bands
resolved by the flavor index μ is ±1 when

|mμ| < |−|. (3.19)

This single-particle insulating phase realizes a Chern insulator
at half-filling. When open boundary conditions are imposed,
channel μ contributes one (Majorana) chiral edge state. The
Chern numbers for the pair of bands resolved by the flavor
index μ have vanishing Chern numbers when

|mμ| > |−|. (3.20)

This single-particle insulating phase is topologically trivial
at half-filling. Gapless boundary states are not generic when
open boundary conditions are imposed.

E. Mean-field potential

After integrating out the Majorana fields and expressing the
scalar fields φ and φ̃ in terms of ± by using Eq. (3.8c), the
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partition function (3.1) becomes

Z ∝
∫

D[+,−]e−Seff , (3.21a)

where

Seff := SB + SF, (3.21b)

SB := βLxLy

ay

[
1

4λ
(+ + −)2 + 1

4̃λ
(+ − −)2

]
, (3.21c)

SF := −1

2

3∑
μ=0

∑
ω,k

ln
[ − ω2 − v2

μk2
x − (mμ − − cos q)2

−2
+ sin2 q

]
, (3.21d)

with q := kyay.
When λ = λ̃, the action (3.21) is invariant under a global

antiunitary Z2 transformation defined by

+ �→ −+, − �→ −, i �→ −i. (3.22)

This transformation is the mean-field counterpart to the time-
reversal transformation defined in (3.3). We note that the
μ-resolved global Majorana parity represented by the Z2

transformation (3.3) is invisible in the action (3.21) as we have
integrated out Majorana fields. The m-resolved Z2 transfor-
mation (3.5) is also invisible in the action (3.21) since σm =
σm+1 for any m = 1, . . . , n under the mean-field approxima-
tion (3.5).

We are interested in the zero temperature and thermody-
namic limit β → ∞, Lx → ∞, and Ly → ∞ of the effective
action (3.21). The summations then become integrals in three-
dimensional space-time.

The Bosonic contribution to the mean-field potential is
defined by

VMF,B := ay

βLxLy
SB

= 1

4λ
(+ + −)2 + 1

4̃λ
(+ − −)2, (3.23)

where SB is given by Eq. (3.21c).
Similarly, the Fermionic contribution to the mean-field

potential is

VMF,F := ay

βLxLy
SF :=

3∑
μ=0

V μ
eff,F, (3.24a)

where SF is given by Eq. (3.21d) and we have defined

V μ
eff,F := −1

2

∫ +∞

−∞

dω

2π

∫ +�x

−�x

dkx

2π

∫ +π

−π

dq

2π

× ln
[
ω2 + v2

μk2
x + (mμ − − cos q)2 + 2

+ sin2 q
]
,

(3.24b)

with �x as a momentum cutoff that regularizes a divergent
momentum integral over kx. This momentum cutoff is on the
order of the bandwidth for the spin excitations of the single
quantum spin-1/2 ladder defined in Sec. IV that regularizes
the quantum field theory describing a single wire. As it should
be, the final expression for the mean-field potential (3.27) is
independent of the value of �x when the mean-field values of
+ and − are measured in units of the momentum cutoff �x.
This is a typical feature of mean-field solutions in the (quasi-)
one dimension [26].

After performing the integrals over the Matsubara frequency ω and over the momentum kx [27],∫ ∞

−∞

dω

2π
ln(ω2 + k2 + A2) =

√
k2 + A2 + const,

we are left with

V μ
eff,F = −�2

x

vμ

4π

∫ +π

−π

dq

2π

{√
F 2

μ (q) + 1 + F 2
μ (q) ln

[
1 +

√
F 2

μ (q) + 1
] − F 2

μ (q) ln Fμ(q)
}
, (3.25a)

where

Fμ(q) := 1

vμ

√(
mμ

�x
− −

�x
cos q

)2

+
(

+
�x

)2

sin2 q. (3.25b)

Finally, the total mean-field potential VMF is the addition of the bosonic mean-field potential VMF,B (3.23) to the fermionic
mean-field potential VMF,F (3.24), i.e.,

VMF := VMF,B + VMF,F. (3.26)

It is more convenient to rewrite VMF (3.26) into the dimensionless form

vMF(+,−) := �−2
x × VMF(+,−)

= 1

4λ

(
+
�x

+ −
�x

)2

+ 1

4̃λ

(
+
�x

− −
�x

)2

− 1

4π

3∑
μ=0

vμ

∫ +π

−π

dq

2π

{√
F 2

μ (q) + 1 + F 2
μ (q)

× ln[1 +
√

F 2
μ (q) + 1] − F 2

μ (q) ln Fμ(q)
}
, (3.27)

with Fμ(q) defined in Eq. (3.25b).
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We observe that the mean-field potential (3.27) is invariant
under

mμ → −mμ, + → −+, − → −−. (3.28)

Thus, without loss of generality, we will assume that
mμ,+ � 0, whereas − ∈ R.

F. Saddle-point equations

The saddle-point equations stem from the first-order
derivative of Veff (3.27) with respect to + and −, respec-
tively,

0 =
(

1

2λ
+ 1

2̃λ

)
+ +

(
1

2λ
− 1

2̃λ

)
− − 1

2π

×
3∑

μ=0

[
1

vμ

∫ +π

−π

dq

2π
+ sin2 q arcsinh

(
1

Fμ(q)

)]
, (3.29a)

0 =
(

1

2λ
− 1

2̃λ

)
+ +

(
1

2λ
+ 1

2̃λ

)
− − 1

2π

3∑
μ=0

×
[

1

vμ

∫ +π

−π

dq

2π
(− cos q − mμ) cos q arcsinh

(
1

Fμ(q)

)]
,

(3.29b)

where Fμ(q) is defined in Eq. (3.25b).
For simplicity, we assume a hidden SU (2) symmetry that

implies that the conditions (2.8) must hold (see Sec. IV).
For simplicity, vs = vt ≡ v ≡ 1. We also assume that ms = 0,
a consequence of fine-tuning at a quantum critical point of
a microscopic building block of the model (see Sec. IV A).
We solve for (+,−) in Eq. (3.29) numerically for an
arbitrary value of λ, λ̃, and mt

�x
. As we are only interested in

local minima of the saddle-point equations (3.29), we use the
Hessian matrix,

HHess :=
⎛⎝ ∂2VMF

∂2+
∂2VMF

∂+∂−

∂2VMF
∂−∂+

∂2VMF

∂2−

⎞⎠, (3.30)

and demand that it is positive definite. A solution (+,−)
of Eq. (3.29) is stable if the Hessian matrix evaluated at
(+,−) is positive definite.

G. Mean-field phase diagram

By combining Eq. (2.8) with Eq. (3.12), we find the singlet
and triplet gaps,

�s := 2|−| = |φ − φ̃|, (3.31a)

�t := 2||mt| − |−|| = 2
∣∣|mt| − 1

2 |φ − φ̃|∣∣, (3.31b)

respectively, given a stable solution (+,−) to the saddle-
point equations (3.29). Correspondingly, we enumerate the
following four possibilities:

+ = +− = +φ/2 �= 0, φ̃ = 0, (3.32a)

+ = −− = −φ̃/2 �= 0, φ = 0, (3.32b)

+ = φ = φ̃, − = 0, (3.32c)

− = (φ − φ̃)/2 = ±mt �= 0. (3.32d)

Case (3.32a) is obtained when λ > 0 whereas λ̃ = 0. Case
(3.32b) is obtained when λ = 0, whereas λ̃ �= 0. Case (3.32c)
implies that the singlet gap vanishes �s = 0, whereas the
triplet gap is solely controlled by the triplet mass �t = |mt|.
Case (3.32d) implies that the triplet gap vanishes �t = 0,
whereas the singlet gap is solely controlled by the triplet mass
�s �= 2|mt|.

Figure 1 summarizes the numerical search for the
stable solutions to the saddle-point equations (3.29) in
the three-dimensional coupling space λ � 0, λ̃ � 0, and
|mt| � 0, holding vμ and ms fixed to the values vμ ≡ 1 and
ms = 0, respectively. The terminology ATO for Abelian topo-
logical order and NATO for non-Abelian topological order
applies whenever the stable saddle point delivers Chern insu-
lating bands with four and one chiral Majorana edge states,
respectively, upon imposing the open boundary condition
along the y direction. Which chirality is to be found on the
left (m = 1) or right (m = n) ends of the model defined in
Eq. (2.4) is specified by the combination of letters LR or RL.
Of course, there is no topological order at the mean-field level
as the ground state is nondegenerate when periodic boundary
conditions are imposed. However, we conjecture that the
ground-state manifolds in the ATO and NATO phases acquire
distinct nontrivial topological degeneracies when the mean-
field approximation is relaxed. Computing explicitly these
topological degeneracies is beyond the scope of this paper.
Nevertheless, the existence of bulk topological excitations can
be inferred by invoking the bulk-edge correspondence—the
chiral central charge of the CFT on the edge must be related to
the unitary braided fusion category of the topological quantum
field theory in the bulk (see Refs. [3,28,29]).

1. Phase transitions between ATO and NATO

There are two wings of yellow-colored surfaces in Fig. 1.
Within the same LR- or RL-topologically ordered phases,
ATO and NATO phases are separated by a yellow-colored
surface on which the triplet gap �t defined in Eq. (3.31b)
vanishes (namely, |−| = |mt|). As a demonstration, we plot
in Fig. 2 the blue curves by fixing (λ, λ̃) = (7, 1) in Fig. 1.
In Figs. 2(a) and 2(b), we find a continuous dependence on
mt of the stable solution + and − to the saddle-point
equations (3.29). It follows from Eq. (3.31) that the singlet
gap �s and the triplet gap �t in Figs. 2(c) and 2(d) are
also continuous dependent on mt . Moreover, the triplet gap
vanishes at |mt|/�x ≈ 0.76 that signals a continuous quantum
phase transition.

The two yellow wings to the left and right of the quadrant
λ = λ̃ in Fig. 1 are connected by a stripe (colored in brown)
that separates the ATO from the NATO phases by a discontin-
uous quantum phase transition. As a demonstration, in the red
curves of Fig. 2, we move away from (λ, λ̃) = (4, 4) in Fig. 1
by choosing (λ, λ̃) = 4

√
2(sin θ, cos θ ) with θ = 23π/90.

We present the stable solution + and − as a function
of mt in the red curves of Figs. 2(a) and 2(b), respectively.
There is a discontinuous dependence on mt of the stable
solution + and − to the saddle-point equations (3.29) that
delivers a discontinuous dependence on mt of the singlet gap
�s and the triplet gap �t in the red curves of Figs. 2(c)
and 2(d).
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FIG. 2. Blue curve: We fix (λ, λ̃) = (7, 1) in Fig. 1 so as to strongly break time-reversal symmetry. Red curve: We fix (λ, λ̃) =
4
√

2(sin θ, cos θ ) with θ = 23π/90 in Fig. 1 so as to weakly break time-reversal symmetry. (a) and (b) Continuous and discontinuous
dependences on mt of the stable solution + and − to the saddle-point equations (3.29). (c) and (d) Continuous and discontinuous
dependences on mt of the singlet gap �s and the triplet gap �t given by Eq. (3.31). The triplet gap �t represented by the blue curve vanishes
at |mt|/�x ≈ 0.76 that signals a continuous quantum phase transition.

2. Case λ = λ̃

Figure 1(b) summarizes the numerical search for the stable
solutions to the saddle-point equations (3.29) in the quadrant
λ = λ̃ � 0 and |mt| � 0, holding vμ and ms fixed to the values
vμ ≡ 1 and ms = 0, respectively. We found three distinct

mean-field phases whose boundaries are shown in Fig. 1(b).
One phase is gapless. Two phases are gapful when periodic
boundary conditions are imposed [30]. The region bounded
by the vertical axis and the green curve supports a stable
solution to the saddle-point equations (3.29) with + �= 0, but

FIG. 3. (a) and (b) Cut with fixed λ = λ̃ = 4 from Fig. 1(b). The stable mean-field solutions + and − are presented in panels (a) and
(b) as functions of |mt|/�x , respectively. The |mt|/�x dependence of the singlet (�s) and the triplet (�t) gaps are plotted in panels (c) and
(d) by making use of Eqs. (3.31a) and (3.31b), respectively.
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FIG. 4. The stable mean-field solutions + and − as a function
of θ := arctan(λ/̃λ) and fixing λ2 + λ̃2 = 32. When θ = π/4, there
is a discontinuous (respectively, continuous) phase transition for
panels (a) and (c) [respectively, (b)]. (a) Case |mt|/�x = 0.1. Here,
|+| �= |−| whereas, ||+| − |−|| � 1. (b) Case |mt|/�x = 1.
(c) Case |mt|/�x = 3.

− = 0. Hence, this solution respects the time-reversal
symmetry of the mean-field Hamiltonian. It follows from
Eq. (3.31) that the triplet gap �t is nonvanishing whereas the
singlet gap �s is vanishing. The triplet of the Majorana is
thus gapped, whereas the singlet of the Majorana is gapless
because of a Dirac-like band touching. The dashed line (col-
ored in brown) in Fig. 1(b) is a line of discontinuous quantum
phase transitions by which |−| < |mt| above the dashed line,
whereas |−| > |mt| below the dashed line. The discontinu-
ous jump of |−| is evidence for a mean-field discontinuous
quantum phase transition. This discontinuity is mirrored in the
discontinuities of +, �s, and �t as exemplified in Fig. 3 for
(λ, λ̃) = (4, 4).

As a comparison, we plot in Fig. 4 the stable mean-field
solutions + and − as a function of θ := arctan(λ/̃λ) and
fixing λ2 + λ̃2 = 32 for |mt|/�x = 0.1, 1, and 3 in Figs. 4(a)–
4(c), respectively. When θ = π/4, there is a discontinuous
(respectively, continuous) phase transition for panels (a) and

(c) [respectively, (b)]. We note that, in Fig. 4(a), the value of
|−| is not equal to |+| whereas ||+| − |−|| � 1.

IV. LATTICE REGULARIZATION

We are going to show that the one-dimensional lattice
model (4.1) regularizes the (1 + 1)-dimensional quantum field
theory with the Hamiltonian density obtained by adding
Eq. (2.1a) to Eq. (2.2) with n = 1. This will be achieved using
the density-matrix renormalization group (DMRG) [31,32] to
match quantum criticality in the quantum field theory with that
in the lattice model.

We will then couple a one-dimensional array of spin-1/2
ladders of the form (4.1) as is performed in Hamiltonian (4.5)
and argue that this two-dimensional lattice model regularizes
the Hamiltonian density (2.4).

A. Numerical study of a two-leg ladder

Following Ref. [15], we define a spin-1/2 ladder by the
Hamiltonian,

Ĥladder :=
N−1∑
i=1

J1Ŝi · Ŝi+1 +
N−1∑
i′=1

J1Ŝ
′
i′ · Ŝ

′
i′+1 +

N∑
i=1

J⊥Ŝi · Ŝ
′
i

+
N−1∑
i=1

J× (̂Si · Ŝ
′
i+1 + Ŝi+1 · Ŝ

′
i )

+
N−1∑
i=1

JU (̂Si · Ŝi+1)(̂S
′
i · Ŝ

′
i+1). (4.1)

Here, Ŝi and Ŝ
′
i′ are spin-1/2 operators localized on the

sites of the first and second legs of the ladder, respectively.
There are three independent couplings obeying J1 > 0 and
J⊥, J×, JU ∈ R with the condition J× ≡ −J⊥/2. References
[15,33,34] have shown that, at the level of bosonization, the
low-energy limit of the ladder (4.1) is the single copy (n = 1)
of the noninteracting massive Majorana field theory defined
by adding the Hamiltonian densities (2.1a) and (2.2) with the
mass terms ms and mt related to the microscopic couplings in
Eq. (4.1) by

ms = −1

2π
(12J⊥ + JU ), mt = 1

2π
(4J⊥ − JU ). (4.2)

Bosonization thus predicts the existence for the spin-1/2 lad-
der (4.1) of a quantum critical point in the Ising universality
class for which ms = 0 as the dimensionless ratio JU /J⊥
smoothly crosses the critical value of (JU /J⊥)c ≈ −1/12. We
are going to use the technique of the DMRG [31,32] to verify
this prediction. We fix the units of energy by setting J1 = 1,
bound from above the bond dimension in the DMRG by 1500
and impose open boundary condition.

The phase diagram as a function of JU < 0 and |J⊥| � 0.3
is shown in Fig. 5(a). Here, CD and RS stand for columnar
dimer and rung singlet, respectively. A classical representa-
tion for the CD and the RS phases is obtained by coloring
nearest-neighbor bonds as shown in Figs. 5(b) and 5(c). The
acronym H stands for the Haldane phase of the antiferromag-
netic quantum spin-1 Heisenberg chain [35,36]. The Haldane
phase is obtained when J⊥ is ferromagnetic (J⊥ < 0) and |JU |
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FIG. 5. (a) The phase diagram for the ladder model (4.1) as a
function of JU < 0 and |J⊥| � 0.3. The phase boundary between
the columnar-dimer (CD) and the rung-singlet (RS) phases is a
continuous phase transition in the Ising universality class. The phase
boundary between the Haldane phase (H) and the columnar-dimer
phase is a continuous phase transition in the ŝu(2)2 Wess-Zumino-
Novikov-Witten (WZNW) universality class. (b) Classical represen-
tation for the CD order. (c) Classical representation for the RS order.

is not too large. Increasing |JU | weakens the Haldane phase
until it gives way to the CD phase. Destroying the CD phase
is achieved by changing the sign of J⊥ holding |JU | fixed.

The phase boundary between the CD phase and the RS
phase is a continuous phase transition belonging to the two-
dimensional Ising universality class. The numerical evidence
for this Ising transition is supported by the finite-size scaling
of the leg-dimer order parameter [14,37],

Di := 〈̂Si · (̂Si+1 − Ŝi−1)〉, i = 1, . . . , N − 1 (4.3)

combined with an estimate of the central charge from the
scaling of the entanglement entropy.

In Figs. 6(a) and 6(b), we fix JU = −1. We then calculate
DN/2(J⊥) for various values of J⊥ and N . We find an Ising
critical point at J⊥,c ≈ 0.041 for which the Ising scaling laws
[37] for the order parameter provide an excellent fit.

Another piece of evidence to support the Ising transition is
provided by the scaling form of the bipartite von Neumann
entanglement entropy under an open boundary condition
[37–42]. It is given by

S(x, N ) = c

6
ln

(
N + 1

π
sin

πx

N + 1

)
+ A〈̂Sx · Ŝx+1〉 + B.

(4.4)
Here, x is the position of the rung at which we partition
the ladder into left and right “worlds,” c is the (to be deter-
mined) central charge, and A, B are nonuniversal constants.
In Figs. 6(c) and 6(d), we fix JU = −1 and J⊥ = 0.041. In
Fig. 6(c), we vary x keeping N fixed. In Fig. 6(d), we fix
x = N/2 and vary N . Both calculations are consistent with an
Ising transition for which the exact central charge c = 1/2.

The phase boundary between the H phase and the RS phase
in Fig. 5(a) is predicted within the bosonization framework
to be a continuous phase transition belonging to the (1 + 1)-

FIG. 6. (a) Plot for the leg-dimer order parameter (4.3) at the
center of the ladder DN/2 as a function of J⊥ for different system
sizes while fixing JU = −1. The extrapolation to the thermodynamic
limit is obtained with a second-order polynomial in 1/N , whereas the
dashed curve is a fit to the Ising scaling law D∞(J⊥) ∝ (J⊥,c − J⊥)1/8

in the vicinity of the critical point J⊥,c ≈ 0.041. (b) Fixing JU = −1,
this log-log plot shows the scaling of DN/2 with 1/N for different
values of J⊥ in the vicinity of the critical point. The Ising scaling
law DN/2(J⊥,c ) ∝ N−1/8 fits pretty well the scaling of DN/2 at the
transition point J⊥,c ≈ 0.041. (c) and (d) Fitting the entanglement
entropy from Eq. (4.4) as a function of x with N = 128 in panel
(c) and of N with x = N/2 in panel (d) yields c = 0.4692 and
c = 0.4824, respectively.

dimensional ŝu(2)2 WZNW universality class. The central
charge is 3/2, and the critical exponent for the scaling of the
order parameter is 3/8. We have obtained DMRG evidence
for such a transition in the same way as was performed for
the Ising transition. As this transition is not the focus of this
paper, we will not present these numerical results.

We conclude this section by observing that the spin ladder
model defined in Eq. (4.1) with J× ≡ 0 was recently studied
in Ref. [43]. Reference [43] derives a phase diagram similar
to that shown in Fig. 5(a). The only differences are the slopes
of the phase boundaries. These differences can be understood
from the fact that the phase boundaries of the spin-1/2 ladder
(4.1) are determined by the zeros of the masses of the Ma-
jorana fields (4.2). Choosing different intraladder couplings
changes the relation (4.2) between the masses of the Majorana
fields and the microscopic couplings. This change affects the
slopes of the phase boundaries in the microscopic model. We
opted to introduce a nonvanishing coupling J× ≡ −J⊥/2 in
Hamiltonian (4.1) in order to suppress all the bare couplings
for all marginally relevant perturbations to the ŝu(2)1 ⊕ ŝu(2)1

WZWN critical point [i.e., all couplings except J1 set to zero
in Eq. (4.1)] [15,33].
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B. Model of coupled spin-1/2 two-leg ladders

We take n copies labeled by the index m = 1, . . . , n of the
spin-1/2 ladder (4.1). We couple this array of spin-1/2 ladders
with the interladder interaction [15],

Ĥinterladder := Ĥ� + Ĥ ′
� + Ĥ� + Ĥ ′

�, (4.5a)

where

Ĥ� := Jχ

2

N∑
i=1

n−1∑
m=1

[̂
Si,m+1 · (̂Si+1,m ∧ Ŝi,m )

+ Ŝi+1,m · (̂Si,m+1 ∧ Ŝi+1,m+1)
]
, (4.5b)

and

Ĥ� := J∨
N∑

i=1

n−1∑
m=1

(
Ŝi,m · Ŝi,m+1 + 1

2
Ŝi,m+1 · Ŝi+1,m

+ 1

2
Ŝi,m · Ŝi+1,m+1

)
, (4.5c)

with Ĥ ′
� and Ĥ ′

� deduced from Ĥ� and Ĥ� by the substitution

Ŝi,m → Ŝ
′
i,m. The low-energy limit of Hamiltonian Ĥinterladder

was obtained using bosonization in Refs. [14,15] (see also
Ref. [11]). Aside from a renormalization of the velocities
entering the quadratic Hamiltonian density (2.1a), it produces
as was shown in Ref. [44] the quartic Majorana interaction
(2.3) with the couplings λ and λ̃ related to the microscopic
couplings entering Eq. (4.5b) by [14,15]

λ = 2a[(Jχ/π ) + 2J∨], λ̃ = 2a[−(Jχ/π ) + 2J∨]. (4.6a)

We will use shortly the reciprocal relation,

J∨ = 1

8a
(λ + λ̃), Jχ = π

4a
(λ − λ̃). (4.6b)

The two-dimensional spin-1/2 model is then defined by

Ĥ := Ĥ array
ladder + Ĥinterladder, (4.7)

where Ĥ array
ladder is simply the sum of n copies of the spin-1/2

ladder (4.1).

C. Implications

We are now ready to deduce from the mean-field phase
diagram Fig. 1 of the quantum field theory (2.4) the following
predictions for the two-dimensional array of coupled spin-1/2
ladders (4.7).

First, fixing ms = 0 implies the linear condition [cf.
Eq. (4.2)],

J⊥ ∝ −JU . (4.8)

It then follows that mt is only controlled by one parameter,
namely,

|mt| ∝ |J⊥| ∝ |JU |. (4.9)

Second, fixing λ = λ̃ implies Jχ ≡ 0, i.e., the three-spin
interaction that breaks explicitly time-reversal symmetry must
vanish. We then deduce from the quantum field theory (2.4)
that the two-dimensional spin-1/2 lattice model (4.7) could
support three phases of which two are gapped and break

spontaneously the time-reversal symmetry whereas one is
gapless and time-reversal symmetric. There is an important
caveat here, namely, that we have neglected perturbations,
whose bare couplings are very small (e.g., generated by
quantum corrections) but relevant at the

⊕
m[ŝu(2)1 ⊕ ŝu(2)1]

WZWN critical point that would stabilize the collinear long-
ranged ordered phase or dimer phases [45,46]. If we ignore
this possibility, a too small or too large |mt| ∝ |J⊥| ∝ |JU |
could then stabilize a topologically ordered spin-liquid phase,
whereas intermediate values of |mt| ∝ |J⊥| ∝ |JU | with λ =
λ̃ ∝ J∨ > 0 not too large (say, λ � 8) could stabilize a gapless
spin-liquid phase with a Dirac point. The mean-field transition
through the time-reversal-symmetric quadrant λ = λ̃ from the
region with λ < λ̃ to the region with λ > λ̃ is continuous
(discontinuous) if it goes through the gapless (one of the
gapped) phase.

V. SUMMARY

We have studied a strongly interacting QFT describ-
ing a two-dimensional array of wires containing four (a
singlet and a triplet) massive Majorana fields in (1 + 1)-
dimensional space-time. This QFT is a continuum limit of
a two-dimensional lattice model of spins S = 1/2 interacting
via SU (2) symmetric two-, three-, and four-spin interactions.
In the continuum limit, these interactions give rise to two Ma-
jorana masses and to competing quartic Majorana interactions
(with couplings λ and λ̃) that are interchanged under time
reversal. The case of λ �= 0, λ̃ = 0 when the time reversal
is explicitly broken was studied by us before [15]. Here, we
have considered the limit λ = λ̃ and established the conditions
under which time-reversal symmetry is broken spontaneously.

At the mean-field level on the time-reversal-symmetric
plane λ = λ̃, we have found three competing phases. There are
two gapped phases that break spontaneously the time-reversal
symmetry; they are gapped in the bulk and support chiral
Majorana edge modes carrying the chiral central charges 2
and 1/2, respectively. One phase is conjectured to signal an
ATO; the other is conjectured to signal a NATO if the mean-
field approximation is relaxed. This pair of mean-field gapped
phases is separated by a line of points at which a discontinuous
phase transition takes place. However, we have also found
a time-reversal-symmetric mean-field phase that supports a
branch of mean-field Majorana modes with a gapless Dirac
spectrum. This phase is bounded by a line of continuous phase
transitions separating it from the mean-field snapshot of the
NATO phase.

We remark that, although we have assumed that the singlet
mass ms is vanishing in our mean-field analysis and treated
the triplet mass mt as a tunable parameter, we could equally
well have reversed the roles of the singlet and triplet masses.
If so, we can simply exchange the role played by the triplet
and the singlet Majorana modes. The resulting mean-field
phase diagram would contain again the mean-field snapshots
of an Abelian phase and of a non-Abelian phase. The Abelian
phase is the same Abelian phase as in the present paper.
The non-Abelian phase would be different, however, as its
chiral edge modes would carry a chiral central charge of 3/2.
A non-Abelian topologically ordered phase with chiral edge
states endowed with the central charge 3/2 is a cousin to
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the Moore-Read state for the fractional quantum Hall effect
[4]. One also finds such a non-Abelian topologically ordered
phase for certain spin-1 Heisenberg models on the square
lattice [47].
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