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Leptoquarks (LQs) provide very promising solutions to the tensions between the experimental
measurements and the SM predictions of b → slþl− and b → cτν processes. In this case the LQ masses
are in general at the TeV scale and they can thus be produced at high energy colliders and dedicated LHC
searches are ongoing. While for LQ production and decay the OðαsÞ corrections have been known for a
long time, the OðαsÞ corrections to the matching on 2-quark-2-lepton operators have not been calculated,
yet. In this article we close this gap by computing the QCD corrections to the matching of LQmodels on the
effective SM Lagrangian for both scalar and vector LQs. We find an enhancement of the Wilson
coefficients of vector operators with respect to the tree-level results of around 8% (13%) if they originate
from scalar (vector) LQs. This softens the LHC bounds and increases the allowed parameter space of LQ
models addressing the flavor anomalies.
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I. INTRODUCTION

Significant deviations from the SM predictions in b →
sμþμ− processes (above the 5σ level [1,2]) and in b → cτν
processes (at the 4σ level [9]) were observed in recent
years. These observations strongly point toward the viola-
tion of lepton flavor universality in semileptonic B decays,
suggesting a possible connection between these two classes
of decays. In this context leptoquarks [10] (LQs) are natural
candidates for an explanation, since they give tree-level
effects to semileptonic processes while their contributions
to other flavor observables (which in general agree
very well with the SM) are loop-suppressed. In fact,
LQs (including squarks in the R-parity violating MSSM)
have been extensively employed to explain the anomalies
in b → sμþμ− [12–32] or b → cτν [33–46] processes.
Furthermore, they can even provide a common explanation
[47–86].

Direct searches for LQs at the LHC have been performed
[89–93] and also projections for future colliders in the
context of the above mentioned flavor anomalies have been
investigated [94]. For collider processes the QCD correc-
tions to production and decay of LQs are known for a long
time [95–97] and have been improved to include NLO
parton shower [98] or a large width [99]. Furthermore, in
recent analyses correlating the B anomalies to LHC
searches [62,100–104] QCD corrections to production
and/or decay were included. However, the analogous αs
corrections for LQ effects in the low energy observables
(i.e., semileptonic B decays), which should be taken into
account for consistency, are still missing.
In this article we therefore compute the 1-loop QCD

corrections to the matching of models with LQs on the
effective 4-fermion SM Lagrangian. After establishing our
conventions in the next section, we perform the computa-
tion both for scalar and vector leptoquarks in a general
gauge for the gluon fields in Sec. III. Finally we examine
the importance of the calculated effects and conclude.

II. SETUP

As a starting point we consider the following generic
Lagrangian governing the couplings of scalar (vector)
LQs Φ (Vμ) of mass M to leptons l (charged leptons or
neutrinos) and quarks q (up or down type):
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LLQ
ql ¼ q̄ðΓS

LPL þ ΓS
RPRÞlΦ� þ H:c:

þ q̄ðΓV
Lγ

μPL þ ΓV
Rγ

μPRÞlV�
μ þ H:c: ð1Þ

Note that here we do not consider gauge invariance with
respect to SUð2ÞL or Uð1ÞY. This is possible for our
purpose since these gauge symmetries are disjunct from
SUð3Þc. We also do not explicitly include the possibility of
charge conjugated fields because this again does not affect
the calculation of the QCD corrections. We will come back
to the issue of charge conjugation later when we discuss the
phenomenological importance of our results.
Let us now define the effective Lagrangian containing

only SM fields in the q̄ll̄q basis, which we call “LQ basis”

LLQ
eff ¼ C̃AB

S ÕAB
S þ C̃AB

V ÕAB
V þ C̃A

TÕ
A
T; ÕAB

S ¼ q̄PAll̄PBq;

ÕAB
V ¼ q̄γμPAll̄γμPBq; ÕA

T ¼ q̄σμνPAll̄σμνPAq; ð2Þ

as well as the corresponding operators in the “SM basis”
with q̄ql̄l operators

LSM
eff ¼CAB

S OAB
S þCAB

V OAB
V þCA

TO
A
T; OAB

S ¼ q̄PAql̄PBl;

OAB
V ¼ q̄γμPAql̄γμPBl; OA

T ¼ q̄σμνPAql̄σμνPAl: ð3Þ

Here A;B ¼ L, R label the chiralities. Performing the
tree-level matching we obtain in the LQ basis

C̃LR
S ¼ jΓS

Lj2
M2

; C̃LL
S ¼ ΓS

LΓS�
R

M2
; C̃L

T ¼ 0;

C̃LL
V ¼ −

jΓV
L j2
M2

; C̃LR
V ¼ −

ΓV
LΓV�

R

M2
; ð4Þ

and the corresponding formula with L ↔ R. Using stan-
dard Fierz identities (see e.g., [105,106])

CLL
V ¼ C̃LL

V ¼ −
jΓV

L j2
M2

;

CLR
S ¼ −2C̃RL

V ¼ 2
ΓV
RΓV�

L

M2
;

CL
T ¼ −

1

8
C̃LL
S ¼ −

1

8

ΓS
LΓS�

R

M2
;

CLL
S ¼ −

1

2
C̃LL
S ¼ −

1

2

ΓS
LΓS�

R

M2
;

CLR
V ¼ −

1

2
C̃RL
S ¼ −

1

2

jΓS
Rj2
M2

; ð5Þ

where we again do not show the results which are obtained
by an interchange of chiralities L ↔ R.

III. CALCULATION AND RESULTS

Let us now turn to the calculation of the QCD corrections
to the Wilson coefficients. Here, the same procedure is
applied as within the SM when integrating out theW boson

[107] in order to determine the αs corrections to Eq. (5). We
performed the calculation, also with the help of FeynArts
[108] and FeynCalc [109], in dimensional regularization.
We assume that the vector LQ (VLQ) is a gauge boson of

an unspecified gauge group. Thus, its couplings (and the
ones of the corresponding Goldstone bosons) to gluons
and ghosts are determined uniquely by requiring SUð3Þc
gauge invariance and the corresponding Lagrangian which
also contains the mass term of the VLQ with mass M is
given by [110]

LQCD
VLQ ¼−

1

2
Kα†

μνK
μν
α þ igsV

α†
μ Ta

αβV
β
νG

μν
a þM2Vα†

μ Vμ
α; ð6Þ

with

Kα
μν ¼ ðDαβ

μ Vνβ −Dαβ
ν VμβÞ: ð7Þ

Here, Dαβ
μ ¼ ∂μδ

αβ þ igsT
αβ
a Aa

μ is the covariant derivative
with respect to QCD, α and β are color indices and a labels
the eight generators Ta of SUð3Þc, Aa

μ are the gluon fields
and Gμν

a is the usual field-strength tensor of SUð3Þc.
Therefore, the situation is very similar to the SM, where
the couplings of the W boson and its Goldstone to photons
and ghosts are governed by the electromagnetic gauge
symmetry (i.e., the electric charge of the W) and a
knowledge of the whole SM gauge group is not necessary.
Thus, the VLQ (and the corresponding ghosts) couples in
the same way to gluons as the photon to the W (and its
ghosts) with the replacement e → −gsTa.
As mentioned, the aim of this work is to calculate QCD

corrections to the Wilson coefficients appearing in Eqs. (2)
and (3). To fix the order αs pieces of these coefficients, we
calculate the scattering amplitude A for the process ql̄ →
ql̄ both in the full theory and in the effective theory. Within
the full theory we have to calculate the following ingre-
dients: the LQ self-energy, the box diagrams and the
genuine vertex corrections (see Fig. 1). Within the effective
theory we only have to calculate the genuine vertex
correction. We note that we used a naive anticommuting
γ5 in our calculations. The amplitude in the full theory is
independent of the treatment of γ5, since no commutations
in d-dimensions occur. The same is true for the amplitude
in the effective theory in the LQ basis. However, the Wilson
coefficients of the SM basis are scheme dependent. This
scheme dependence is cancelled by using the same scheme
for the computation of the corresponding matrix elements.
Since the Wilson coefficients of our dimension six

operators do not depend on the momenta and masses of
the external particles, we put them to zero in our calcu-
lation. By doing so, we also avoid the generation of terms
which correspond to operators of dimension higher than
six. Similarly, this means that we also set the fermion
masses in the couplings of Goldstone bosons to zero.
Therefore, box diagrams or vertex corrections involving
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Goldstones vanish and merely their effect in the LQ self-
energy remains. In our computational framework infrared
(IR) divergences related to soft and collinear gluons are
dimensionally regularized, manifesting themselves as 1=εIR
poles. For the gluon we use a general gauge with gauge
parameter ξ while for the vector LQ we use Feynman gauge
(i.e., ξLQ ¼ 1).
In both the full and the effective theory we perform the

necessary renormalizations leading to ultraviolet finite
expressions for the amplitude A, from which we then
can extract the QCD corrections to the Wilson coefficients.
We are aware of the fact that our calculation of the QCD

corrections to the Wilson coefficients presented in the
following subsections could be partially abbreviated at
several places. For didactical reasons, however, we calcu-
late the complete renormalized amplitude for both the full
and the effective theory (for the very simple configuration
of external states as stated above), mainly because we want
to illustrate that the ξ-dependence drops out at the level of
the renormalized amplitudes.

A. Calculation in the full theory

In the full theory the result for the ql̄ → ql̄ amplitude
(discarding terms of order 1=M3 and higher) can be written
in lowest order as

AS
tree ¼ i

�jΓS
Lj2
M2

hÕLR
S i þ ΓS

LΓS�
R

M2
hÕLL

S i þ L ↔ R

�
;

AV
tree ¼ i

�
−
jΓV

L j2
M2

hÕLL
V i − ΓV

LΓV�
R

M2
hÕLR

V i þ L ↔ R

�
; ð8Þ

for scalar and vector LQ exchange, respectively. The
symbol hÕi is a short-hand notation for the tree-level
matrix element hl̄qjÕjql̄i associated with the operators in
(2). In the following we calculate order αs QCD corrections
to this amplitude, discussing in turn the contributions due to

the LQ self-energy, the vertex corrections and the box
diagram.
We identify the corresponding self-energy diagram in

Fig. 1 (with amputated external legs) with −iΣSðp2Þ for
scalar LQs. For working out its direct contribution to the
amplitude A, we need ΣS at p2 ¼ 0. In our computation we
also have to renormalize the mass M of the leptoquark,
which we do in the on-shell scheme. As the corresponding
renormalization constant is directly related to ΣSðM2Þ, we
give the results at p2 ¼ M2 and at p2 ¼ 0, reading

ΣSðM2Þ
M2

¼ αs
4π

CF

�
3

ε
þ 3lμ þ 7

�
;

ΣSð0Þ
M2

¼ αs
4π

CFξ

�
1

ε
þ lμ þ 1

�
; ð9Þ

with lμ ¼ logðμ2=M2Þ.
The combined effect of the direct contribution and the

renomalization constant of the LQ mass leads to the
occurrence of ΣSðM2Þ − ΣSð0Þ at the level of the amplitude
A. Therefore, we only kept self-energy bubble diagrams in
the above expressions, i.e., all self-energy contributions
which are not tadpoles, as the latter drop out in the difference.
For the vector LQ we identify the corresponding diagram

with þiΣμν
V . In our computation we only need the part

proportional to þigμν which we denote as ΣVðp2Þ. Again,
the expressions for p2 ¼ 0 and p2 ¼ M2 are needed,
reading

ΣVðM2Þ
M2

¼ αs
36π

CF

�
57

ε
þ 57lμ þ 89

�
;

ΣVð0Þ
M2

¼ αs
4π

CF

�ðξþ 5Þ
2

�
1

ε
þ lμ

�
þ ðξþ 7Þ

4

�
: ð10Þ

The vertex corrections lead to the following contribution to
the amplitude

FIG. 1. Examples of Feynman diagrams in the full and in the effective theory. G denotes the ghost contribution. Not shown are the
vector LQ self-energy with a Goldstone and a gluon as well as the vertex correction for the VLQ.
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AS;V
treeð1þ 2ΛS;VÞ; ð11Þ

with

ΛS ¼
αs
4π

CFξ

�
1

ε
þ lμ þ 1

�
; ð12Þ

ΛV ¼ αs
16π

CFðξþ 3Þ
�
3

ε
þ 3lμ þ

5

2

�
: ð13Þ

The box diagram contribution to the amplitudes can be
compactly written as

ΔS¼
αs
4π

CFk1ð1−ξÞAS
tree

−
i
M2

αs
16π

CFk2½ðjΓS
Lj2hÕLR

2γ iþΓS�
L ΓS

RhÕRR
2γ iÞþL↔R�;

ΔV ¼
αs
4π

CFk1ð1−ξÞAV
treeþ

i
M2

αs
16π

CFk2½ðjΓV
L j2hÕLL

3γ i
þΓV

LΓV�
R hÕLR

3γ iÞþL↔R�; ð14Þ

for scalar and vector LQs, respectively. The expressions for
k1 and k2 read

k1 ¼
1

εIR
þ 1þ lμ; k2 ¼

1

εIR
þ 3

2
þ lμ: ð15Þ

The symbols hÕi again denote the tree-level matrix
elements of the operators Õ in (2). Furthermore, we defined

hÕAB
2γ i ¼ hq̄γμγνPAl̄lγνγμPBqi;

hÕAB
3γ i ¼ hq̄γμγνγσPAl̄lγσγνγμPBqi: ð16Þ

In addition to the contributions of the various
diagrams just described, we have to renormalize the
coupling constants of the leptoquark to the fermions and
we have to take into account the LSZ factor of the
quark fields. Thereby the couplings get replaced by ΓS;V

L;R →
ΓS;V
L;Rð1þ δΓS;V

L;RÞ and the quark fields by q → qð1þ δZqÞ.
The explicit expressions read

δΓS
L;R ¼ −

αs
4π

CF
3

2

1

ε
; δΓV

L;R ¼ −
αs
4π

CF
25

6

1

ε
;

δZq ¼
αs
4π

CFξ

�
1

εIR
−
1

ε

�
: ð17Þ

Note that we have already discussed (and taken into
account) the renormalization of the mass of the LQ. The
final renormalized results for the amplitudes in the full
theory read

ASðVÞ;αs
full;ren ¼ ΔSðVÞ þ

�
2ΛSðVÞ þ

ΣS;ðVÞðM2Þ − ΣSðVÞð0Þ
M2

þ δZq þ 2δΓSðVÞ
L;R

�
ASðVÞ
tree : ð18Þ

When inserting all the ingredients listed above into these
formulas, we see that the ultraviolet singularities are
cancelled. Also the ξ dependence related to the gluon
cancels in these expressions, as it should be the case when
calculating on-shell matrix elements. Only 1=εIR infrared
singularities remain which will enter the corresponding
matrix element in the effective theory in precisely the same
way, leading to finite Wilson coefficients.

B. Effective theory and matching

Within the effective theory, we first calculate the QCD
corrections to the amplitudes ql̄ → ql̄ originating from the
operators in Eq. (2) (see last diagram in Fig. 1). We obtain

Δeff
S ¼ αs

4π
CF

�
1

εIR
−
1

ε

�
ð1 − ξÞAS

tree

−
i
M2

αs
16π

CF

�
1

εIR
−
1

ε

�

× ½ðjΓS
Lj2hÕLR

2γ i þ ΓS�
L ΓS

RhÕRR
2γ iÞ þ L ↔ R�;

Δeff
V ¼ αs

4π
CF

�
1

εIR
−
1

ε

�
ð1 − ξÞAV

tree

þ i
M2

αs
16π

CF

�
1

εIR
−
1

ε

�

× ½ðjΓV
L j2hÕLL

3γ i þ ΓV
LΓV�

R hÕLR
3γ iÞ þ L ↔ R�; ð19Þ

for scalar and vector LQs, respectively. We immediately see
that the ξ-dependence drops out when taking into account
the effect of δZq. Furthermore, we observe that the infrared
divergences are then the same as in the full theory. Since we
are interested in the matching, we drop at this level all
the terms involving 1=εIR in both versions of the theory.
We then rewrite

ÕAB
2γ ¼ ð4 − 2εÞÕAB

S þ ÕAB
T : ð20Þ

ÕAB
T vanishes in d ¼ 4 dimensions for A ≠ B. Therefore, it

plays the role of an evanescent operator. For A ¼ B we
have ÕAA

T ¼ ÕA
T , where Õ

A
T is present in the operator basis.

Furthermore, we rewrite ÕAB
3γ (see e.g., Ref. [111]) as

ÕLL
3γ ¼ð4−8εÞÕLL

V −ÕLL
E ; ÕLR

3γ ¼16ð1−εÞÕLR
V −ÕLR

E ;

ð21Þ

where ÕLL
E and ÕLR

E are evanescent operators. Renor-
malizing the operators (including the evanescent ones) in
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the MS-scheme, we obtain (after dropping the infrared
terms as described)

AS;αs
eff;ren ¼ −

i
M2

αs
8π

CF½jΓS
Lj2hÕLR

S i þΓS
LΓS�

R hÕLL
S i�

þ iδC̃LR
S hÕLR

S i þ iδC̃LL
S hÕLL

S i
þ iδC̃R

ThÕR
Ti þ ðL↔ RÞ;

AV;αs
eff;ren ¼

i
M2

αs
2π

CF½jΓV
L j2hÕLL

V i þ 2ΓV
LΓV�

R hÕLR
V i�

þ iδC̃LL
V hÕLL

V i þ iδC̃LR
V hÕLR

V i þ ðL↔ RÞ: ð22Þ

The quantities δC contain the order αs corrections to the
respectiveWilson coefficients. The corresponding results in
the full theory (also after dropping the infrared terms) read

AS;αs
full;ren ¼

i
M2

αs
4π

CF

�
3lμþ

13

2

�
½jΓS

Lj2hÕLR
S iþΓS

LΓS�
R hÕLL

S i�

−
i
M2

αs
16π

CF

�
lμþ

3

2

�
ΓS�
L ΓS

RhÕR
TiþðL↔RÞ;

AV;αs
full;ren ¼−

i
M2

αs
72π

CF½5ð30lμþ41ÞjΓV
L j2hÕLL

V i
þ4ð24lμþ31ÞΓV

LΓV�
R hÕLR

V i�þ ðL↔RÞ: ð23Þ

From these equations the Wilson coefficients are easily
determined, reading

C̃LR
S ¼ jΓS

Lj2
M2

�
1þ αs

4π
CFð3lμ þ 7Þ

�
;

C̃RR
S ¼ ΓS

RΓS�
L

M2

�
1þ αs

4π
CFð3lμ þ 7Þ

�
;

C̃R
T ¼ −

ΓS
RΓS�

L

M2

αs
16π

CF

�
lμ þ

3

2

�
;

C̃LL
V ¼ −

jΓV
L j2
M2

�
1þ αs

72π
CFð150lμ þ 241Þ

�
;

C̃LR
V ¼ −

ΓV
LΓV�

R

M2

�
1þ αs

18π
CFð24lμ þ 49Þ

�
; ð24Þ

and the corresponding equations obtained by exchanging
L and R.
Finally, we have to discuss the transition to the SM basis

[Eq. (3)], in which the QCD running and the physical
observables are calculated. A naive four-dimensional Fierz
transformation is not applicable a priori at the one-loop
level. Instead, we require that the renormalized matrix
elements for the process ql̄ → ql̄ calculated in both
versions of the effective theory coincide. Due to the specific
definition of the evanescent operators [see (Eq. (21))], we
obtain for the Wilson coefficients

CLL;RR
V ¼ C̃LL;RR

V ; CLR;RL
S ¼ −2C̃RL;LR

V ; ð25Þ

i.e., there are no corrections with respect to the 4-
dimensional Fierz identities for vector LQs. However,
for the operators generated by scalar LQs this is not the
case and corrections to the naive Fierz identities do appear,
as our results show:

CRL
V ¼ −

1

2
C̃LR
S

�
1þ 3

8π
CFαs

�
;

CLL
S ¼ −

1

2
C̃LL
S

�
1þ 7

8π
CFαs

�
− 6C̃L

T;

CLL
T ¼ −

1

8
C̃LL
S

�
1 −

1

8π
CFαs

�
þ 1

2
C̃L
T : ð26Þ

At this point, we should remind the reader that the
corrections for the vector LQs are independent of the gluon
gauge parameter ξ but depend on the LQ gauge parameter
(which we set to 1 in Feynman gauge). This is an artefact of
our simplified model framework for the vector LQ. In a UV
complete model there will of course be additional con-
tributions which are not taken into account in our analysis.
However, also for collider analyses simplified models are
used. Furthermore, since we calculate QCD corrections
(and not LQ corrections) to the matching, the independence
on the gluon gauge parameter is sufficient to justify that our
results are reasonable. I.e., we calculated the minimal QCD
matching effects which are present in any model and only
get supplemented by additional effects depending on the
UV completion.

IV. IMPACT AND CONCLUSIONS

The results of our calculation above can be summarized
in the following compact way: In the SM basis, the lowest
order Wilson coefficients of vector and scalar operators
receive a shift

CVLQ
V → CVLQ

V

�
1þ αs

72π
CFð150lμ þ 241Þ

�
;

CVLQ
S → CVLQ

S

�
1þ αs

18π
CFð24lμ þ 49Þ

�
; ð27Þ

if they originate from vector LQs. Concerning operators
arising from scalar LQs we have

CSLQ
V → CSLQ

V

�
1þ αs

4π
CF

�
3lμ þ

17

2

��
;

CSLQ
S → CSLQ

S

�
1þ 3αs

2π
CF

�
;

CSLQ
T → CSLQ

T

�
1þ αs

π
CFðlμ þ 2Þ

�
; ð28Þ

for all Wilson coefficients of vector, scalar and tensor
operators, respectively. Note that these formulas are valid
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for all 10 representations of scalar and vector LQs which
have couplings invariant under the SM gauge group [112]
to quarks and leptons and even apply if the LQ couples to
right-handed neutrinos instead of SM leptons. They also do
not depend on whether or not charged conjugated fields
are involved, since charge conjugation can only lead to a
change in the chirality and/or to an overall relative minus
sign and therefore does not affect the results given above.
Let us now consider the numerical impact of the correc-

tions we calculated. Here we focus on the phenomenologi-
cally most important case of vector operators (in the SM
basis) since they are capable of explaining both the tensions
in b → cτν processes and in b → sμþμ− observables (see
e.g., Ref. [113] for a recent overview). Note that since vector
operators in the SM basis are conserved under QCD, the
dependence of theirWilson coefficients on the scale μ can be
directly identified with the matching scale uncertainty once
the running of the couplings ΓS;V is taken into account.
First, we examine the dependence on the matching scale

μ in the left-handed plot of Fig. 2. For this purpose we show
the ratio CVðμÞ=CVðμ ¼ MÞ both at LO and at NLO. For
the LO estimate we only kept the implicit scale dependence
via the couplings

ΓðμÞ ¼ Γðμ0Þ
�
αsðμÞ
αsðμ0Þ

� γ0Γ
2β0 ; ð29Þ

with β0 ¼ 7 and γ0ΓS
¼ 3CF, γ0ΓV

¼ 25
3
CF for scalar and

vector LQs, respectively[114]. It can be clearly seen that
the scale uncertainty is significantly reduced by the NLO
corrections compared to the LO estimate.
Now let us consider the numerical impact of our NLO

calculation. Here we show the ratio CNLO
V ðμÞ=CLO

V ðμ ¼ MÞ

in the right plot of Fig. 2. I.e., we show the relative effect of
the NLO correction with respect to the naive tree-level
result. The NLO correction is constructive, meaning that
the size of the Wilson coefficients is increased by around
8% (13%) if they originate from scalar (vector) LQs. The
remaining matching scale uncertainty at NLO is indicated
by the colored bands obtained by varying μ (encoded in
CNLO
V ðμÞ) from M=2 to 2M.
Thus, assuming that LQs account for the discrepancies

between the measurement and the SM predictions in
semileptonic B decays, the mass can be larger (assuming
a fixed coupling) than without including the QCD correc-
tions to the matching. This means that signal strength in
LHC searches is reduced, increasing the allowed parameter
space of the models.
Finally, note that even though these operators are very

important for explaining the hints for NP in these observ-
ables, our results are not at all limited to this class of
processes but evidently also apply to e.g., (semi) leptonic
Kaon decays, tau decays and even neutralino DM matter
scattering in the MSSMwhere the squark (neutralino) takes
the role of the scalar LQ (lepton).
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FIG. 2. Left: Dependence of the Wilson coefficients of vector operators (in the SM basis) on a variation of the matching scale μ for
M ¼ 1 TeV. Note that the ratio CVðμÞ=CVðμ ¼ MÞ only depends very weakly on the overall scaleM. One can clearly see that the scale
dependence significantly reduces when going from LO to NLO. The μ dependence of the vector operator is bigger when generated by a
VLQ rather than by a SLQ. Right: Ratio of the Wilson coefficient of vector operators calculated at NLO in αs (CNLO

V ) to the
corresponding Wilson coefficient at leading order at μ ¼ M [CLO

V ðμ ¼ MÞ]. The corresponding colored regions indicate the remaining
NLO matching scale uncertainties and are obtained by varying μ between 1=2M and 2M.
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