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On Nonintrusive Uncertainty Quantification and Surrogate Model Construction
in Particle Accelerator Modeling∗
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Abstract. Using a cyclotron-based model problem, we demonstrate for the first time the applicability and
usefulness of an uncertainty quantification (UQ) approach in order to construct surrogate models.
The surrogate model quantities, for example, emittance, energy spread, or the halo parameter, can
be used to construct a global sensitivity model along with error propagation and error analysis.
The model problem is chosen such that it represents a template for general high-intensity particle
accelerator modeling tasks. The usefulness and applicability of the presented UQ approach is then
demonstrated on an ongoing research project, aiming at the design of a compact high-intensity
cyclotron. The proposed UQ approach is based on polynomial chaos expansions and relies on a
well-defined number of high-fidelity particle accelerator simulations. Important uncertainty sources
are identified using Sobol’ indices within the global sensitivity analysis.
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1. Introduction. Uncertainty quantification (UQ) describes the origin, propagation, and
interplay of different sources of uncertainties in the analysis and behavioral prediction of gen-
erally complex and high-dimensional systems, such as particle accelerators. With uncertainty,
one might question how accurately a mathematical model can describe the true physics and
what impact the model uncertainty (structural or parametric) has on the outputs from the
model. Given a mathematical model, we need to estimate the error. How accurately is a
specified output approximated by a given numerical method? Can the error in the numerical
solutions and the specified outputs be reliably estimated and controlled by adapting resources?
For example, in beam dynamics simulations with space charge, grid sizes would be such a re-
source.

UQ techniques allow one to quantify output variability in the presence of uncertainty.
These techniques can generally tackle all sources of uncertainties, including structural ones.
However, in this paper we focus on parametric uncertainty of input parameters. The moments
of the output distributions are sampled using Monte Carlo [1] or quasi-Monte Carlo [2] meth-
ods, or newer approaches such as Multilevel Monte Carlo [3]. Other approaches exist and are
known as nonsampling-based methods. For an introduction to response surface methods, see
[4, 5]. The most popular method these days, which is used in this paper, is the polynomial
chaos (PC)–based method [6]. Strictly speaking, PC also requires sampling, but it is not
random sampling as in Monte-Carlo-type approaches.
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384 ANDREAS ADELMANN

PC-based techniques for propagating uncertainty and model reduction have been used
in the past in almost all important scientific areas. An incomplete list consists of climate
modeling [7], transport in heterogeneous media [8], Ising models [9], combustion [10], fluid
flow [11, 12], materials models [13], battery design [14], and Hamiltonian systems [15].

In probabilistic UQ approaches, one represents uncertain model parameters as random
variables or processes. Among these methods, stochastic spectral methods [16, 17] based on
PC expansions [6, 18] have received special attention due to their advantages over traditional
UQ techniques. For a more detailed discussion on that subject, consult the introduction of
Hadigol, Maute, and Doostan [14] or, alternatively, the book of Smith [19].

In the field of particle accelerator science, nonintrusive methods are far more attractive
than intrusive methods. The complexity of the physics model would most likely require a total
rewrite of the existing simulation packages in order to facilitate intrusive methods. Because
nonintrusive methods allow the use of existing beam dynamics codes as black boxes, they are
the methods of choice. A nonintrusive method to solve an inverse was proposed in [20]. A
proton beam from a linear charged particle accelerator is focused through the use of successive
quadrupoles. The goal of the inverse problem is to find the unknown initial state of the beam,
in terms of particle position and momentum. Measurement data on the projection of the
phase space was used where available beyond the focusing region. This setup is that of an
inverse problem, in which a computer simulator is used to link an initial state configuration
to observable values, and then inference is performed for the distribution of the initial state.
The Bayesian approach used allows estimation of uncertainty in the initial distributions and
beam predictions.

In this paper, we use OPAL [21, 22] as the black-box solver. As we will see later, only in-
dependent solution realizations are needed, and hence embarrassingly parallel implementation
is straightforward.

The proposed PC approach, first introduced in [16, 23], computes the statistics for the
Quantity of Interest (QoI) with a small number of accelerator simulations. However, in contrast
to [16, 23] we do not exploit the sparsity of expansion coefficients; this is subject to further
research. Additionally, the presented UQ framework enables one to perform a global sensitivity
analysis (SA) to identify the most important uncertain parameters affecting the variability of
the output quantities.

To avoid confusion, we first point out a misnomer by mentioning that polynomial chaos [6]
and chaos theory [24] are unrelated areas. Originally proposed by Wiener [6] in 1938 (prior
to the development of chaos theory—hence the unfortunate usage of the term chaos), PC ex-
pansions are a popular method for propagating uncertainty through low-dimensional systems
with smooth dynamics.

This work presents a sampling-based PC approach to study the effects of uncertainty in
various model parameters of accelerators. As a model problem, we use the central region of
a “PSI Injector 2 like” high-intensity cyclotron, where we only consider the first 10 turns of
the cyclotron. While this paper’s focus is mainly to introduce UQ to the field of particle
accelerator science, we add a realistic example of an ongoing design effort.

1.1. Motivation in lieu of an actual research project. Searches for CP violation in the
neutrino sector and “sterile” neutrinos, respectively, need a lot of statistics, i.e., events. This
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UQ APPLIED TO PARTICLE ACCELERATOR MODELING 385

translates, in the Decay-At-rest Experiment for δCP violation At a Laboratory for Under-
ground Science (DAEδALUS) [40] and the Isotope Decay-At-Rest experiment (IsoDAR) [25],
into high fluxes of protons and compact accelerators in our example cyclotrons. The detailed
exposition on how UQ and PC expansion (PCE) is used in an ongoing research project is
given in section 5; here we want to motivate this approach, and fix language and notation.

x

z
y

θ

◦
◦◦
◦

Figure 1. Spiral inflector with particle trajectories, from the IsoDAR example presented in section 5.

In high-intensity accelerators, the working point is to a large extent defined with setting
the flux of particles per time, i.e., the intensity I (cf. section 4). In the compact accelerator
studied in section 5, the angle θ of the spiral inflector also defines a working point. The spiral
inflector and part of the central region (magnets and cavities not shown) are depicted in
Figure 1. The spiral inflector can be rotated around the z axes by an angle θ.

We consider these as design or controllable parameters. The machine is operated at only
a few distinct different values, e.g., in high-intensity, i.e., production, mode, or for machine
development in lower-intensity mode to prevent damage to or activation of the accelerator.
Similar arguments can be made for θ; cf. section 5.

The other category of parameters are the model parameters. The model parameters are
quantities that are either not measurable or measurable with an associated uncertainty. In the
problem of section 5, the radius r of the injected particles and the associated radial momenta
pr (cf. Figure 1) cannot be measured in-situ, and hence empirical values or values from simple
models together with a meaningful PDF are used. Other quantities can be measured, for
example, the phase of the cavity φ, but we want to find optimal values. In this paper, all
design parameters are independent, bounded, and uniformly distributed.

Maximizing performance in high-intensity accelerators has two main dimensions: 1. max-
imize the number of transmitted particles throughout the accelerator and at the same time
2. minimize particle losses. In Figure 1, one can already see by eye that particle tracks are
terminating at the not shown walls. A few are marked as red circles for illustration purposes.
The tolerable particle losses have to be at levels of 3 to 4 standard deviations of the particle
density. Particle losses are associated with “halo,” i.e., particles that are sufficiently far away
from the core of the distribution, such that they have a high probability of being lost. This all
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386 ANDREAS ADELMANN

translates into the necessity to solve large N-body problems, taking into account the nonlinear
particle-particle interaction, together with complicated boundary conditions. Furthermore, as
hinted above, with the design of such complex scientific instruments, large-scale multiobjective
optimization must be worked out and correlations and sensitivities identified. This motivated
the search for inexpensive to evaluate surrogate models and is one of the main motivations
behind this work.

In section 2, we present our stochastic modeling approach, which is based on nonintrusive
PC expansions. After the derivation of the surrogate model, we then continue with reviewing
a global sensitivity analysis approach using Sobol’ indices. Section 3 introduces the simulation
model and a model problem. Section 4 applies the UQ to the stated problem and shows
the main features of this approach. The features are general in nature and not restricted to
cyclotrons. Section 5 reports on an ongoing design effort using UQ. Conclusions are presented
in section 6.

2. UQ via PCE. Wiener in 1938 [6] introduced PCE. In 1991, Ghanem and Spanos
[16] reintroduced this technique to the field of engineering. They first studied problems with
Gaussian input uncertainties and extended their method to non-Gaussian random inputs. In
their studies, orthogonal polynomials of the Askey scheme were used. This is known as a
generalized polynomial chaos (gPC) expansion [23]. The method of gPC expansion provides
a framework to approximate the solution of a stochastic system by projecting it onto a basis
of polynomials of the random inputs.

An overview and some details on the correspondence between distributions and polynomi-
als can be found in [26]. A framework to generate polynomials for arbitrary distributions has
been developed in [27]. The advantage of using PC is that it provides exponential convergence
for smooth models. However, the approach suffers from the curse of dimensionality, making
them challenging for problems with number of parameters in the range 10 to 50. To miti-
gate the curse of dimensionality, sparse grid techniques have traditionally been used [28, 29].
More recently, iterative methods to propagate uncertainty in complex networks have also been
developed [30, 31, 32].

2.1. The surrogate model. Suppose one is designing or optimizing complex systems such
as particle accelerators. As a particular example, consider the case of a high-intensity hadron
machine. In such a machine, one needs to characterize and minimize some QoIs (for example,
halo), and at the same time increase the beam quality. In order to accomplish this task,
usually a large number of design and model parameters, in the search space D (cf. Figure 2),
have to be considered. Let us furthermore assume that D is the admissible space, i.e., where
the accelerator is working. The goal is to find a desired (optimal) working point ν, such
that properties of the QoIs are met. The restriction to one point is arbitrary, but allows
a more focused discussion. This endeavor is usually accompanied with large and extensive
multiobjective optimizations.

In an ideal world, one would run a large number of high fidelity simulations (in some
proportion to the size of D) to solve the problem. However, even with state-of-the-art tools,
and in cases of practical interest, it is impossible to accomplish this task due to the prohibitive
time to solution.

With the help of adequate surrogate models, there are at least two ways to tackle the
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UQ APPLIED TO PARTICLE ACCELERATOR MODELING 387

ν
◦

D∗ ⊂ D

D ⊂ Rd

Figure 2. Admissible design parameter search space D and one of the many possible ideal configurations
ν (working point) of the accelerator. The red circles depict the training points, from which the surrogate model
will be constructed. The equidistance of these points is not necessary; however, it is sufficient to introduce the
overall concept. We furthermore assume that subspace D∗ is much smaller than D.

problem. First, with a high fidelity simulator we build a surrogate model from a coarser,
discrete search space, depicted by the red points in Figure 2. With this surrogate model we
then predict ν, which eventually yields an optimal solution.

In the second option, we would first find the smaller domain D∗, with the help of the
surrogate model constructed from D. Because D∗ is much smaller than D, it is feasible to
use the expensive high-fidelity model to obtain ν ∈ D∗.

It is important to mention that the surrogate model does not really reduce the search
space. Rather, it is an approximation to the full model over the area of the search space
where one believes that the model matters the most. The goal of the surrogate model is to
create a cheap-to-sample approximation of the full model.

2.2. Mathematical bases of UQ. We briefly introduce the mathematical bases in the
style and the notation of [19, 16, 23, 17, 14]; more details can be found in Appendix A.

All square integrable, second-order random variables with finite variance output, u(ξ) ∈
L2 (Ω,F ,P), can be written as

u(ξ) =
∞∑

|i|=0

αiΨi(ξ).

Hence αi denotes the deterministic coefficients and Ψi(ξ) are the multivariate PC basis func-
tions [19, section 10.1.1], [16], and i is a multi-index. Note that the uncertain QoI, u, is
represented by a vector of deterministic parameters αi. Input uncertainties of the system have
been discretized and approximated by the random vector

(2.1) ξ = (ξ1, . . . , ξd) : Ω→ Rd,

d ∈ N. The probability density function (pdf) of the random variable, ξk, is denoted by ρk(ξ).
Similarly, ρ(ξ) represents the joint pdf of ξ. For the truncated PCE to order p in d dimensions
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388 ANDREAS ADELMANN

of (A.2), we get

(2.2) û(ξ) =
∑

i∈Id,p
αiΨi(ξ),

with Ψi(ξ) certain orthogonal bases functions, and Id,p a set of multi-indices.
The number K of PC basis functions of total order p in dimension d can be calculated to

K =
(p+ d)!

p!d!
.

Because of the orthogonality of Ψik(ξk) and the independence of ξk, as p→∞, the truncated
PCE in (2.2) converges in the mean-square sense if and only if the following two conditions
are fulfilled: (1) u(ξ) has finite variance, and (2) the coefficients αi are computed from the
projection equation [23]

(2.3) αi =
E[ûΨi]

E[Ψ2
i ]
.

2.3. Nonintrusive PCE. In PC-based methods, one obtains the coefficients of the solu-
tion expansion either intrusively [33] or nonintrusively [34]. An intrusive approach requires
significant modification of the deterministic solvers and increases the number of equations to
solve.

Nonintrusive methods, on the other hand, can make use of existing deterministic solvers
(M) as black boxes. First, one needs to generate a set of N deterministic or random samples
of ξ, denoted by {ξ(i)}Ni=1. The second step is to generate N realizations of the output QoI,
{u(ξ(i))}Ni=1, with the available deterministic solver M and without any solver modifications.
The third and final step is to solve for the PC coefficients using the obtained realizations.
Methods such as least-squares regression [35], pseudospectral collocation [17], Monte Carlo
sampling [36], and compressive sampling [37] are available. Along these lines, an in-depth
discussion on least-squares regression and compressive sampling can be found in [14, sections
3.1.1 and 3.1.2].

The mean, E[·], and variance, Var[·], of u(ξ) can be directly approximated from the PC
coefficients because of the polynomial basis orthogonality given by

(2.4) E[û] = α0

and

(2.5) Var[û] =
∑

i∈Id,p
i 6=0

α2
i E[Ψ2(ξi)].

A more complete description will be shown in section 2.5.
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UQ APPLIED TO PARTICLE ACCELERATOR MODELING 389

2.4. Global sensitivity analysis. The expensive, deterministic high-fidelity particle accel-
erator model, M, is described by a function ~u = M(~x), where the input ~x is a point inside
D (cf. Figure 2) and ~u is a vector of QoIs. Finding correlations in these high-dimensional
spaces is nontrivial; however, it is vital for a deep understanding of the underlying physics.
For example, reducing the search space is of great interest in the modeling and optimization
process. In the spirit of Sobol’ [38], let ~u∗ = M(~x∗) be the sought (true) solution. The local
sensitivity of the solution ~u∗ with respect to xk is estimated by (∂~u/∂xk)~x=~x∗ . On the con-
trary, the global sensitivity approach does not specify the input ~x = ~u∗; it only considers the
model M(~x). Therefore, global sensitivity analysis should be regarded as a tool for studying
the mathematical model rather than a specific solution (~x = ~x∗). For details, we refer the
reader to Appendix A.1.

2.5. The UQTk-based framework. In this section, a detailed description is provided
on how the particle accelerator UQ framework is constructed. The framework is based on
the uncertainty quantification toolkit (UQTk) [39], a lightweight C++/Python library that
helps perform basic UQ tasks, including intrusive and nonintrusive forward propagation. The
UQTk can also be used for inverse modeling via Bayesian or optimization techniques. The
corresponding tools used from the UQTk are indicated in typewriter style in the following
algorithm.

Let’s denoteM as the black-box solver, ~λ as the model parameters, and ~x as the design or
controllable parameter, with l distinct values.1 The nonintrusive propagation of uncertainty
from the d-dimensional model parameter ~λ to the output ~ui =M(~λ, xi) follows a collocation

procedure, given a K-dimensional basis ~Ψ = (Ψ1, . . . ,ΨK) and K = (d+p)!
d!p! multivariate basis

terms, with p being the maximal polynomial order.

Algorithm 1. generate for each xi (design or controllable) a PC surrogate model
1. generate N = (p+ 1)d quadrature point-weight pairs (~ξn, wn)

(generate quad).
2. for each of quadrature point ~ξn, compute corresponding model input ~λn by

~λn = λnj =

K−1∑

k=0

λjkΨk(~ξ
n), j = 1, . . . , d.(2.6)

3. create the training points with high-fidelity simulations ( OPAL)

uni =M(~λn, xi), i = 1, . . . , l.(2.7)

4. calculate the expectation via orthogonal projection (pce resp) using quadrature

(2.8) αki =
〈uΨk〉
〈Ψ2

k〉
=

1

〈Ψ2
k〉

N∑

n=1

uni Ψk(~ξ
n)wn, k = 0, . . . ,K − 1.

5. Given the computed αki values for each i and k, one assembles the PCE

(2.9) ûi =
K−1∑

k=0

αkiΨk(~ξ), k = 0, . . . ,K − 1.

1For a fixed value of the design parameter, the surrogate construction algorithm is described in [11].
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390 ANDREAS ADELMANN

Remark 1. The input PC in (2.6) is assumed to be given by an expert. For example,
often only bounds for the inputs are known, in which case (2.6) is simply a linear PC or just
scaling from ξj ∈ [−1, 1] to λj ∈ [aj , bj ] for each j = 1, . . . , d. More explicitly stated, in (2.6),

λj0 =
aj+bj

2 , and λjk = δjk
bj−aj

2 . Thus, (2.6) becomes

(2.10) λnj =
bj + aj

2
+
bj − aj

2
ξnj .

Remark 2. If samples ~ξn are randomly selected from the distribution of ~ξ, then the pro-
jection formula (2.8) still holds, as long as one sets wn = 1/N for all n, and it becomes an
importance sampling Monte Carlo.

Remark 3. In Figure 3, a design parameter ~x is introduced. In case of p+1 < l, i.e., if one
only has a few discrete values for the design parameter, a reduced number model evaluation
is obtained. Instead of sampling this parameter, you create l different response surfaces.

~λ l-bound u-bound
λ1 a1 b1
λ2 a2 b2
...

...
...

λd ad bd

~x = (x1, . . . , xl)

N
E q. (6)

E q. (7)
um = M(~λm, ~x)
m = 1 . . . lN

N E q. (9)

ûi =

K−1∑

k=0

αkiΨk(~ξ), i = 1 . . . l .

ûi

~x

Figure 3. The UQ framework, with the discretized input uncertainties of the system denoted by ~ξ; cf. (2.1).
In case of different design (or controllable) parameters ~x, we would build l separate response surfaces. Details
can be found in Algorithm 1 and Appendix A.
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UQ APPLIED TO PARTICLE ACCELERATOR MODELING 391

2.5.1. Evaluation of the surrogate model. Having constructed the PC coefficients, ac-
cording to (2.8) the utility pce eval can be used to evaluate ûi (2.9).

2.5.2. Sensitivity analysis. As shown in section 2.4, the same information used in the
surrogate model construction can be used in the sensitivity analysis. In the UQTk, pce sens

will compute the total and joint sensitivities along with the variance fraction of each PC term
individually.

3. A general model problem. Charged particle accelerators are among the largest and
most complex scientific instruments. The application of charged particle accelerators ranges
from material science to biology to fundamental physics questions, currently addressed, for
example, with the LHC or in the future maybe with experiments like DAEδALUS/IsoDAR
[40, 25] (cf. section 5). There exist a wide range of different accelerator types and a commonly
used classification in linear and circular types based on the geometrical nature. Given this
taxonomy, a circular accelerator with a nonconstant radius of curvature is the most general
accelerator and is used as a template for all other conventional types. Even in the simplest
incarnation of a cyclotron [41], a rich dynamic is present, periodic or near periodic orbits or,
in general, twist maps.

The Hamiltonian that describes the motion of a classical relativistic charged particle in a
general magnetic field [42] is given by

(3.1) H = (1 + h)

√
(P− qA)2 c2 +m2c4 + qφ.

We are neglecting in this discussion the spin and radiation for the sake of simplicity. All
external electromagnetic fields (magnets, etc.) are absorbed in the vector potential A, and
with P we denote the generalized momenta. Charge and mass are denoted by m and q,
respectively, and c is the speed of light. In the case of a cyclotron, all quantities are expressed
in a Frenet–Serret coordinate system with nonconstant curvature h (cf. Figure 4). The scalar
potential φ represents the nonlinear particle-particle interaction. The computation of φ and
the resulting nonlinear force is computationally very expensive, and the effect of these forces
is a limiting factor of high-intensity particle accelerators. The limiting aspect is based on
the fact that these repulsive forces create a halo around the core of the particles. This halo
has a tendency to separate from the core and contribute to particle losses, which in the end
activates the machine to a level where maintenance is difficult or even impossible.

The case of a cyclotron represents a large class of accelerator topologies. For example, in
case of vanishing curvature h in (3.1) the case of a linear accelerator is recovered. We select
the cyclotron in order to demonstrate the applicability of this framework in a very general
context.

Solving such a problem under relevant circumstances is equivalent to solving a large N-
body problem with nontrivial boundary conditions. This, together with the multiscale nature
of the problem—in time and phase space—is calling for a hierarchy of models. On the extreme
end we are using a 1:1 ratio between simulation and macroparticles and computational times
of days on high end parallel computers. Low-dimensional models, on the other hand, are
important to narrow a potential high-dimensional search space and to make the problem
more accessible.
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392 ANDREAS ADELMANN

Surrogate models as introduced in the previous section are in between the two extremes.
They cover some nonlinearities but are much faster to evaluate compared to the high-fidelity
model. With the sensitivity analysis we will get insight into a correlated space of QoIs and
model parameters.

3.1. The accelerator simulation model. For this discussion, we briefly introduce OPAL-
cycl [43], one of the three flavors of OPAL. OPAL will be used as the back-box solver denoted
by M in (2.7).

3.1.1. Governing equation. In the cyclotron under consideration, the collision between
particles can be neglected because the typical bunch density is low. In time domain, the general
equations of motion for charged particles in electromagnetic fields can be expressed by

dp(t)

dt
= q (cβ ×B + E).

We denote p = mcγβ as the momentum of a particle, β = (βx, βy, βz) as the normalized
velocity vector, and γ as the relativistic factor. In general, the time (t) and the position (x)
dependent electric and magnetic vector fields are written in an abbreviated form as B and E.

If p is normalized by m0c, then (3.2) can be written in Cartesian coordinates as

dpx
dt

=
q

m0c
Ex +

q

γm0
(pyBz − pzBy),

dpy
dt

=
q

m0c
Ey +

q

γm0
(pzBx − pxBz),(3.2)

dpz
dt

=
q

m0c
Ez +

q

γm0
(pxBy − pyBx).

The evolution of the beam’s distribution function, f(x, cβ, t) : (RM × RM × R) → R, can be
expressed by a collisionless Vlasov equation:

(3.3)
df

dt
= ∂tf + cβ · ∇xf + q(E + cβ ×B) · ∇cβf = 0.

Here it is assumed that M particles are within the beam. In this particular case, E and B
include both externally applied fields and space charge fields:

E = Eext + Esc,

B = Bext + Bsc;(3.4)

all other fields are neglected.

3.1.2. The self-fields. The space charge fields can be obtained by a quasi-static approx-
imation. In this approach, the relative motion of the particles is nonrelativistic in the beam
rest frame, and thus the self-induced magnetic field is practically absent and the electric field
can be computed by solving Poisson’s equation

(3.5) ∇2φ(x) = −ρ(x)

ε0
,
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where φ and ρ are the electrostatic potential and the spatial charge density in the beam rest
frame. The electric field can then be calculated by

(3.6) Esc = −∇φ

and transformed back to yield both the electric and the magnetic fields, in the lab frame, as
required in (3.4) by means of a Lorentz transformation. Because of the large vertical gap in
our cyclotron, the contributions from image charges and currents are minor compared to space
charge effects [44], and hence it is a good approximation to use open boundary conditions.
Details on the space charge calculation methods utilized in OPAL can be found in [43, 45, 46].

3.1.3. External fields. With respect to the external magnetic field, two possible situations
can be considered. In the first situation, the real field map is available on the median plane
of the existing cyclotron machine using measurement equipment.

In most cases concerning cyclotrons, the vertical field, Bz, is measured on the median
plane (z = 0) only. Since the magnetic field outside the median plane is required to compute
trajectories with z 6= 0, the field needs to be expanded in the z-direction.

According to the approach given by Gordon and Taivassalo [47], by using a magnetic
potential and measured Bz on the median plane at the point (r, θ, z) in cylindrical polar
coordinates, the third-order field can be written as

(3.7) ~Bext(r, θ, z) =

(
z
∂Bz
∂r
− 1

6
z3Cr,

z

r

∂Bz
∂θ
− 1

6

z3

r
Cθ, Bz −

1

2
z2Cz

)
,

where Bz ≡ Bz(r, θ, 0) and

Cr =
∂3Bz
∂r3

+
1

r

∂2Bz
∂r2

− 1

r2
∂Bz
∂r

+
1

r2
∂3Bz
∂r∂θ2

− 2
1

r3
∂2Bz
∂θ2

,

Cθ =
1

r

∂2Bz
∂r∂θ

+
∂3Bz
∂r2∂θ

+
1

r2
∂3Bz
∂θ3

,(3.8)

Cz =
1

r

∂Bz
∂r

+
∂2Bz
∂r2

+
1

r2
∂2Bz
∂θ2

.

All the partial differential coefficients are computed on the median plane data by interpolation,
using Lagrange’s 5-point formula.

In the second situation, a 3D field map for the region of interest is calculated numerically
from a 3D model of the cyclotron. This is generally performed during the design phase of
the cyclotron and utilizes commercial software. In this case, the calculated field will be more
accurate, especially at large distances from the median plane; i.e., a full 3D field map can be
calculated. For all calculations in this paper, we use the method of Gordon and Taivassalo [47].

For the radio-frequency cavities, a radial voltage profile V (r) along the radius of the
cavity is used. The gap-width, g, is included in order to correct for the transit time. For the
time-dependent field,

(3.9) ∆Erf =
sin τ

τ
∆V (r) cos(ωrft− φ),
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with F denoting the transit time factor (F = 1
2ωrf∆t) and ∆t the transit time defined by

(3.10) ∆t =
g

βc
.

In addition, a voltage profile varying along the radius will give a phase compression of the
bunch, which is induced by an additional magnetic field component Bz in the gap,

(3.11) Bz '
1

gωrf

dV (r)

dr
sin(ωrft− φ).

Figure 4. The cyclotron model problem setup. The two red lines indicate the two double gap flat-top
resonators, the blue line represents a collimator, and the yellow circle stands for the initial conditions.

Finally, in this paper, both the external fields and space charge fields are used to track
particles for one time step using a fourth-order Runge–Kutta (RK) integrator. This means
the fields are evaluated four times in each time step. Space charge fields are assumed to be
constant during one time step because their variation is typically much slower than that of
external fields.

4. Application of the UQ framework to a model problem. To demonstrate the usefulness
and strength of UQ, consider a simplified model of the PSI Injector 2 cyclotron, which is
sketched in Figure 4. The simplifications are as follows: (1) only energies up to 8.5 MeV (turn
10) are considered to reduce the computational burden; (2) a Gaussian distribution, linearly
matched to the injection energy of 870 keV, is used for the initial conditions; (3) the magnetic
field and RF structures are the same as in our full production simulation; (4) Pr and R are
obtained from equilibrium orbit simulations; and (5) one collimator is introduced in order to
mimic bunch shaping. Full scale high-fidelity simulations of this kind can be found in [48, 22],
where similar physics goals were pursued.
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4.1. Model parameters. In typical design studies of high-power cyclotrons, the high num-
ber of model parameters is such that one cannot fully scan their entire range. For this feasibility
study, one model parameter out of a family of three important categories (cf. Figure 4) was
chosen:

1. initial conditions: model parameter 〈xpx〉, correlation between the initial x and px
phase-space variables;

2. collimator settings: model parameter ∆C1, position of the collimator;
3. RF phase settings: model parameter φ1 defines the phase of the acceleration cavity.

From previous experience, these three categories have the most influence when designing and
optimizing high-precision models of high-power cyclotrons. The relationship of the parameters
with uncertainties, λ1, λ2, λ3, is shown in Figure 3.

4.2. Quantities of interest (QoIs). The phase space spanned by M macroparticles, in the
high-fidelity OPAL model (simulation), is given by (~qi(t), ~pi(t)) ∈ Γ ⊂ R(2M+1) and i = x, y, z.
We identify a subset of interesting QoIs such as

1. ε̃x =
√
〈~q2x~p2x〉 − 〈~qx~px〉2 the rms projected emittance and x̃ the rms beam size;

2. the kinetic energy E and rms energy spread ∆E;

3. ht = 〈~q4x〉
〈~q2x〉2 − k, the halo parameter in the x-direction at the end of turn t with k ∈ R,

and a distribution dependent normalization constant.
The rms beam size x̃ is one of the better quantities that can be directly measured and hence
among the first candidates for characterization of the particle beam. A measure of the pro-
jected phase-space volume is the emittance ε̃x. This quantity is often used for the estimation of
the beam quality. The two energy related parameters E and ∆E are target values to achieve.
The first one, E, is closely related to the experiment, where the particle beam is designed for.
The energy spread, ∆E, is directly related to the beam quality in the case of the presented
model problem. Minimizing the halo of the particle beam is equal to minimizing losses, the
most important quantity to optimize in high-power hadron accelerators. In the formulation of
ht, this parameter is deviating from 1 if and only if the initial chosen distribution is changing.
If the initial distribution is a stationary distribution, this measure can be attributed to the
mechanism of halo generation, in the case of a deviation from the value 1.

In the case of a high-intensity cyclotron model, we choose the controllable parameter ~y as
the average current.

4.3. UQ model setup. The controllable parameters are not modeled with polynomials,
but rather given by 10 equidistant values from 1 to 10 mA. As a next step, the polynomial
type for the model parameter is chosen according to the Wiener–Askey scheme (cf. Appendix
B). The distribution of the three model parameters 〈xpx〉, ∆C1, and the phase φ1 are modeled
according to a uniform distribution using polynomials of the Legendre type. The bounds of
the distribution are given in Table 1.

Other parameters for the UQ model are listed in Table 2.

4.4. High-fidelity simulations vs. surrogate model. As a first method to determine the
validity of the surrogate model, the values of the high-fidelity OPAL simulations on the x-
axis and the values of the surrogate model on the y-axis were compared. The distance of the
corresponding point to the line x = y is a measure of the surrogate model’s quality. The QoIs,
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Table 1
Upper and lower bounds of the design parameters.

V-name L-bound U-bound

〈xpx〉 −0.5 0.5

∆C1 (mm) 0 5

φ1(◦) −20 20

Table 2
Summary of UQ related parameters for the presented results. The dimension for all the experiments is

d = 3. The one controllable parameter ~x has length l = 4.

Parameter Meaning Experiment 3 2 1

p order of surrogate construction 2 3 4
quadrature points per dimension (p+ 1) 3 4 5

N quadrature points N = (p+ 1)d 27 64 125
K polynomial basis terms K = (d+ p)!/d!p! 10 20 35
N · l number of high-fidelity runs 108 256 500

as defined in section 4.2, are compared for a subset of controllable parameters, 1, 5, 8, and 10
mA, and for three different orders of the surrogate model, as described in Table 2. All data
from the surrogate model and the high-fidelity model are taken at the end of turn 10 in our
model problem. The maximum training error is calculated from the dataset used to create
the surrogate model.

Overall, the expected convergence is observed when increasing p as shown in Figures 5–10,
and furthermore this is supported by the L2 error shown in section 4.6.

4.4.1. Projected emittance and beam size. Given the fact that the emittance is a very
sensitive quantity, measuring phase space volume, it is surprising, but also promising, that such
a good agreement between the surrogate model and the high-fidelity model can be achieved.
This is graphically illustrated in Figures 5 and 6. The maximum training error in % is given
in Tables 3 and 4 and is below 7% for all considered cases.

Table 3
Maximum training error in % between the high-fidelity and surrogate models for the projected emittance ε̃x

of the beam.

P = 4 P = 3 P = 2

I = 1 mA 1.94 2.81 3.35
I = 5 mA 5.04 4.77 2.79
I = 8 mA 4.89 4.95 6.70
I = 10 mA 3.6 2.78 5.60

4.4.2. Final energy. The energy dependence shown in Figure 7 for 10 mA serves as an
illustration of the expected behavior for all other intensities. This is because of the small
gain the third harmonic cavity is supposed to deliver (in the PSI Injector 2, we use the
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Table 4
Maximum training error in % between the high-fidelity and surrogate models for the rms beam size x̃ of the

beam.

P = 4 P = 3 P = 2

I = 1 mA 0.70 0.87 1.03
I = 5 mA 2.32 2.90 3.49
I = 8 mA 1.04 3.33 1.86
I = 10 mA 1.33 1.98 1.39
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Figure 5. Projected emittance ε̃x (mm-mr) for all three experiments described in Table 2.
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Figure 6. The rms beam size x̃ (mm) for all three experiments described in Table 2.

third harmonic cavity for acceleration). For the given experiment, only the last two turns
are contributing. This fact is even better illustrated, when looking at the maximum training
error, which is ≤ 0.07%, as seen in Table 5.

4.4.3. rms energy spread. Despite the fact that the rms energy spread is influenced by
space charge, the collimation, and the change in phase, a very good agreement with absolute
deviations ≤ 5% was obtained. Table 6 and Figure 8 show details.

4.4.4. Halo parameters. The halo parameter was evaluated at turn 5 (Figure 9) and at
turn 10 (Figure 10). As anticipated, the halo grows and the surrogate model has a maximum
absolute error of ≤ 5%, again a very good accuracy.
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Figure 7. Final energy E (MeV) for I = 10 mA and all experiments described in Table 2.

Table 5
Maximum training error in % between the high-fidelity and surrogate models for the final energy of the beam.

P = 4 P = 3 P = 2

I = 1 mA 0.013 0.017 0.070
I = 5 mA 0.013 0.036 0.066
I = 8 mA 0.014 0.029 0.057
I = 10 mA 0.010 0.027 0.056

Table 6
Maximum training error in % between the high-fidelity and surrogate models for the energy spred ∆E of

the beam.

P = 4 P = 3 P = 2

I = 1 mA 0.97 1.67 1.62
I = 5 mA 2.56 1.04 1.29
I = 8 mA 2.56 2.75 4.65
I = 10 mA 3.00 3.70 4.48

4.5. Sensitivity analysis. Sk in (A.8) can be interpreted as the fraction of the variance
in model M that can be attributed to the ith input parameter only. STk in (A.9) measures
the fractional contribution to the total variance due to the ith parameter and its interactions
with all other model parameters. In what follows, an analysis based on STk is shown for the
model problem.

Figure 11 shows, for a subset of the controllable parameter I, sensitivities of the QoIs with
respect to the model parameters. The polynomial order is p = 4; similar correlations for other
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Figure 8. Energy spread ∆E (keV) for all three experiments described in Table 2.

orders are not shown.
Correlations, for example the insensitivity of the energy, and x, px or the significant energy

phase correlation, are consistent with what is anticipated. A very mild dependence on x, px
is observed and expected. There is a phase correlation appearing in the case of I = 5 mA,
which seems to be suppressed at other intensities, and the initial correlation of the distribution
seems to become insignificant. A closer inspection of the phase space, beyond the scope of this
article, hints that the halo at this intensity has a minimum. This could explain the observed
behavior and is subject to a deeper investigation.

These are very interesting findings that can guide new designs but also improve existing
accelerators, and show the quintessential merit and power of such a sensitivity analysis.
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Figure 9. The dimensionless halo parameter h after turn 5 for all three experiments described in Table 2.

4.6. Error propagation and L2 error. In Figure 12, the L2 error

L2 =
||û− u||2
||û||2

between the surrogate model û and u, the high-fidelity OPAL model, is shown for E, the
final energy of the particle beam, and all values of the controllable parameter I. The mean
value and variance are shown on the left y-axis. We can now precisely define the error and the
dependence of the surrogate model on P . The expected convergence of the surrogate model as
a function of P is shown for one model parameter only because of similar behavior in the other
considered parameters. This clearly helps in choosing an appropriate order of the surrogate
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Figure 10. The dimensionless halo parameter h after turn 10 for all three experiments described in Table 2.

model. In addition, the accuracy was checked using a hold out model of Nrs = 100 uniform
random samples over the model parameter domain ~λ.

4.7. Predictions. The surrogate model is constructed by selecting an appropriate number
of training points in order to sample the input uncertainties of the design parameter space.
These finite number of training points are depicted as yellow points in Figure 13. However, with
the surrogate model we can choose any point within the lower and upper bounds specified
(ai, bi in (2.10)) in order to obtain ~λ in (2.6). In Figure 13, the red points are arbitrarily
chosen within the specified bounds and they are very well within the bounds of the surrogate
model and the 95% confidence level (CL) obtained by evaluating the Student-t test. The data
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Figure 11. Experiment 1: Global sensitivity analysis for intensities of 1, 5, 8, and 10 mA.

presented in Figure 13 are only from experiment 3 in the case of 1 mA.

4.8. Performance. The presented surrogate model is the most simple but gives, for the
nontrivial model problem, statistically sound results. This fact and the remark that the
evaluation of the surrogate model is ∼ 800× faster than the high-fidelity model (0.5 seconds
vs. 400 seconds) opens up unprecedented possibilities in research areas such as on-line modeling
and multiobjective [49, 50] optimization of charged particle accelerators.

4.9. Conclusions for the model problem. For a representative and at the same time
nontrivial model problem, an accurate and fast to evaluate surrogate model is presented.
From the sensitivity analysis, a phase correlation, in the case of I = 5 mA, could be observed.
A surrogate model for the halo parameter with high fidelity is constructed. Due to the low
computational cost of the surrogate mode, future optimization, minimization of the halo, is
conceivable. This model problem should be understood as a “showcase” demonstrating the
applicability of this approach in a generalized accelerator setting.

5. Contribution to the DAEDδALUS/IsoDAR accelerator design effort. The Decay-At-
rest Experiment for δCP violation At the Laboratory for Underground Science (DAEδALUS)
[40] and the Isotope Decay-At-Rest experiment (IsoDAR) [25] are proposed experiments to
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Figure 12. Medium values and variances are shown as dots and error bars on the left y-axis for the
extraction energy E. The global L2 error (lines) between the high-fidelity and the surrogate models, for the final
energy of the particle beam, is shown on the right y-axis.

search for CP violation in the neutrino sector and “sterile” neutrinos, respectively. In order
to be decisive within 5 years, the neutrino flux and, consequently, the driver beam current,
produced by a chain of cyclotrons (cf. Figure 14), must be high, higher than achieved today.

With CP violation we recognize two broken symmetries: the broken C-symmetry (charge
conjugation symmetry) and P-symmetry (parity symmetry). If CP-symmetry would not be
broken, the law of physics is the same if a particle is interchanged with its antiparticle (C
symmetry), while its spatial coordinates are inverted (“mirror” or P-symmetry).

The hypothetical sterile neutrinos are particles that interact only via gravity. To distin-
guish them from the known active neutrinos, the name sterile is stipulated.

5.1. Physics motivation. The standard model of particle physics includes three so-called
“flavors” of neutrinos, νe, νµ, and ντ , and their respective antiparticles. These particles can
change flavor (neutrino oscillations), a process that can be described using a mixing matrix.
This means that neutrinos must have a small mass [51]. In addition, some experiments aimed
at measuring these oscillations in more detail have shown anomalies that led to the postulation
of “sterile” neutrinos which would take part in the oscillation, but, contrary to the three known
flavors, do not interact through the weak force [52]. Another important question is whether
the three-neutrino model can give rise to a CP-violating phase δCP [53], which might explain
the matter-antimatter asymmetry in the universe today.
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Figure 13. The surrogate mode for x̃, together with training and prediction points. The 95% CL of the
model is also shown.

Figure 14. Cartoon picture of one single DAEδALUS module with the injector part that can be used for
IsoDAR highlighted on the right. The spiral inflector (cf. Figure 15) would be located in the middle of the DIC,
at the end of the line marked with LEBT (low energy beam transfer).

The main challenge, from the accelerator point of view, is the handling of the high-
intensity beams. Of utmost importance is the minimization of particle losses and hence
the understanding and mitigation of the particle halo. A second and related task is the
optimization of the exit path out of the cyclotron. Here the separation of the last two turns
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Figure 15. Two different spiral inflector positions, with azimuth θ = 135 (left) and θ = 140 (right) degrees.

in the cyclotron has to be maximized. The conducted research by the DAEδALUS/IsoDAR
collaboration over the last couple of years suggests that it is feasible, albeit challenging, to
accelerate 5 mA of H+

2 to 60 MeV/amu in a compact cyclotron and boost it to 800 MeV/amu
in the DSRC (DAEδALUS Superconducting Ring Cyclotron) with clean extraction in both
cases.

The following surrogate model construction and sensitivity analysis of the IsoDAR cy-
clotron is research in progress, i.e., far from complete, but should illustrate the potential of
the introduced methods on an ongoing design effort.

5.2. Initial conditions for maximal energy and turn separation. In order to run the
physics experiment with the highest efficiency, a target energy of 60 MeV/amu and lowest
particle losses has to be reached.

A large turn separation between the extracted turn n and the turn n − 1 allows the
insertion of a septum to change the sign of curvature of the nth orbit and hence facilitate
clean (lossless) extraction of the beam. Detailed initial conditions for the cyclotron simulation
are obtained from a 3D spiral inflector model, as shown schematically in Figure 15 [54]. From
the exit of the spiral inflector, we need to find optimal initial conditions for the full cyclotron
favorable. We restrict the number of parameters to three model parameters describing the
beam initial conditions, which are injection radius r, radial momenta pr (cf. Figure 1), and
the phase φ of the radio frequency of the acceleration cavities (not shown in Figure 1). The
controllable parameter is the angle θ of the spiral inflector, which brings the beam from the
vertical direction into the midplane. We varied the azimuthal angle, θ, of the spiral inflector
over a range of 5 deg as shown in Figure 15. With the guidance of the sensitivity analysis
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Figure 16. Global sensitivity analysis for finding the most favored spiral inflector position. On the left side,
the sensitivities for a spiral inflector position of θ = 135 deg is shown, while on the right side a more favorable
position of θ = 140 deg, reducing the influence of pr on the turn separation ts.
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a)

b)

Figure 17. (a) Comparison of the surrogate model with order 2 and order 5 over the full energy range. (b)
The high energy part of the spectrum where the fifth order is necessary to recover the high-fidelity model.

(cf. Figure 16), we selected the most favorable case of 140 degrees for the inflector angle to
minimize the impact of pr on the turn separation (ts). The radial position r of the beam and
the phase φ(r) of the cavities are directly accessible to control, while the radial momenta pr
are not directly accessible for control, and hence a low sensitivity of the QoI with respect to
pr is desired.

The influence of the spiral inflector position was known to have an impact on the extraction
efficiency; a direct quantification of this fact was, to our knowledge, never described.

Having fixed the spiral inflector position, a surrogate model was constructed to estimate
the final energy E and ts. We concentrate on the model for the energy and remark that
the performance of the ts’s is very similar. A detailed discussion about the ts as well as the
influence of the spiral inflector position will be given in a forthcoming physics paper.

In Figure 17, a random sample Nrs = 100 is used to compare the high-fidelity model
to the surrogate model with orders 2 and 5. The second-order model is behaving very well
until, at high energies, nonlinearities from the curvature of the RF sine wave are present. In
Figure 17(b), the performance of the fifth-order model, in the high energy sector, is visible;
in Table 7, the L2 error is given.

5.3. Maximal transmission. Inspection of Figure 1 reveals the fact that particles will
terminate at some location very early in the machine. Particles with wrong dynamical prop-
erties need to be removed from the ensemble at low energies; otherwise, we would lose them
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Table 7
L2 error in energy as a function of the order of the surrogate model.

Order L2 × 10−5, Nrs = 100

2 4.097
3 1.846
4 1.415
5 1.020

at higher energies and activate and/or damage the machine. For this purpose, collimators are
inserted, just after injection (not shown in the figures). These collimators can be spatially
adjusted and will deliberately remove particles with wrong dynamical properties, such as large
vertical momenta.

The following multiobjective optimization problem needs to be solved: given a range of
target emittance at extraction (indicate the quality of the beam), maximize the transmission
(minimize losses). We remark that in order to solve this problem, many time consuming
particle-in-cell simulations have to be conducted. Hence, an accurate surrogate model could
have a substantial impact on the time to solution.

In order to construct such a model, we consider four collimators as model parameter λ
and search for a surrogate model for the transmission Q = Ninj/Next × 100%, with Ninj the
injected number of particles and Next the surviving (to be extracted) number of particles.

The second QoIs are the emittances defined in section 4.2. As in the previous section, we
use a uniform random sample Nrs = 100 to evaluate the quality of the surrogate model.

In Figure 18, we recognize a very good agreement between the random samples (from high-
fidelity OPAL simulations) and the surrogate model. The same is true for the beam quality
shown in Figure 19. Hence we can conclude that for the four QoIs, energy E, transmission Q,
and emittances εx and εy, we can construct high-fidelity surrogate models.

One PIC simulation, used to train the model, runs for approximately 13090 seconds on 8
cores (Intel KNL). The evaluation of the fourth-order multivariate polynomial takes less than
0.002 seconds using the UQTk software. This represents a speedup of ≈ 6.5× 106 and allows
us to do large-scale multiobjective optimization, using surrogate models as a forward solver.
These optimizations are part of ongoing research for the IsoDAR compact cyclotron design.

6. Conclusions. A sampling-based UQ approach is presented to study, for the first time,
the effects of input uncertainties on the performance of particle accelerators. A particular,
but complex, example in the form of a high-intensity cyclotron was used to demonstrate the
usefulness of the surrogate model as well as the global sensitivity analysis via computing
the total Sobol’ indices. The presented physics problem is a model problem, with the aim
of demonstrating the usefulness and applicability of the presented UQ approach. However,
we claim to present a problem that can be recognized as a template for many high-intensity
modeling attempts and beyond.

The proposed UQ approach is based on PCE using the UQTk software. The goal is to
achieve an accurate estimation of solution statistics using a minimal number of high-fidelity
simulations. For several QoIs, a surrogate model was constructed; the validity is proved by

c© 2019 SIAM and ASA. Published by SIAM and ASA under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

01
/1

6/
20

 to
 1

29
.1

29
.2

14
.1

79
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



410 ANDREAS ADELMANN

Figure 18. Surrogate model for the transmission Q, compared with random sampling.

a) b)

Figure 19. Comparison of the surrogate model for εx and εy with orders 2 and 5.

comparing to a high-fidelity model. L2 error norms show the expected convergence with regard
to the degree of the PCE. For the rms beam size (x̃), holdout points, i.e., points that are not
used in the training set, were evaluated and compared to the statistical expectations from the
model. We found that the values are consistent with the surrogate model and clearly within
the 95% CL.
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The Sobol’-based global sensitivity analysis was in line with the expectation from the
physics evaluation of the model problem. A tremendous speedup of a factor of 800 on the
model problem and up to ≈ 6.5 × 106 was observed, comparing the time to solution of the
surrogate model to the high-fidelity model. This opens up possibilities for on-line modeling
and multiobjective optimization of complex particle accelerators using surrogate models.

Future research includes the continuation of the IsoDAR design effort by using the sur-
rogate model in parameter optimization, branching out into the field of proton therapy, with
focus on understanding the uncertainty of accelerator parameters, in relation to the applied
radiation dose to the patient. An inverse problem to find initial particle distributions was
solved in [20]. The presented ansatz could be used to achieve similar goals.

In this article, conceptionally we followed the simplest approach towards UQ. Given the
encouraging results, we plan to enhance this model by using Hermite chaos, and going to
higher dimensions, which implies the use of sparse methods or Latin hypercube sampling.

Particle accelerators in general create a vast amount of high-quality data, including the
QoIs we have considered. Including such data into the model or solving an inverse problem
could be interesting research topics for the future.

Appendix A. Mathematical bases of PC-based UQ. We briefly introduce the mathemat-
ical bases in the style and the notation of [19, 16, 23, 17, 14]. Let (Ω,F ,P) be a complete
probability space, where Ω is the sample set and P is a probability measure on F , the σ-field
(algebra) or Borel measure. Input uncertainties of the system have been discretized and ap-
proximated by the random vector ξ = (ξ1, . . . , ξd) : Ω → Rd, d ∈ N. The probability density
function (pdf) of the random variable, ξk, is denoted by ρ(ξk). Similarly, ρ(ξ) represents the
joint pdf of ξ.

Let i be a multi-index i = (i1, . . . , id) ∈ Id,p and the set of multi-indices Id,p be defined
by

(A.1) Id,p = {i = (i1, . . . , id) ∈ Nd0 : ‖i‖1 6 p},

where ‖ · ‖1 is the l1 norm, i.e., ‖ · ‖1 = i1 + · · ·+ id, and p is the polynomial order.
All square integrable, second-order random variables with finite variance output, u(ξ) ∈

L2 (Ω,F ,P), can be written as

(A.2) u(ξ) =

∞∑

|i|=0

αiΨi(ξ).

Hence αi denote the deterministic coefficients and Ψi(ξ) are the multivariate PC basis func-
tions [19, section 10.1.1], [16]. Note that the uncertain QoI, u, is represented by a vector of
deterministic parameters αi.

For the truncated PCE to order p in d dimensions of (A.2), we get

(A.3) û(ξ) =
∑

i∈Id,p
αiΨi(ξ).

c© 2019 SIAM and ASA. Published by SIAM and ASA under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

01
/1

6/
20

 to
 1

29
.1

29
.2

14
.1

79
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



412 ANDREAS ADELMANN

The basis functions Ψi(ξ) in (A.3) are generated from

(A.4) Ψi(ξ) =
d∏

k=1

Ψik(ξk), i ∈ Id,p,

where Ψik are univariate polynomials of degree ik ∈ N0 := N ∪ {0}, orthogonal with respect
to ρk(ξ) (see, e.g., Table 8), i.e.,

(A.5) E[ΨikΨjk ] = 〈ΨikΨjk〉 =

∫
Ψik(ξk)Ψjk(ξk)ρ(ξk)dξk = δikjkE[Ψ2

ik
].

Here δikjk denotes the Kronecker delta and E[·] is the expectation operator.
The number K of PC basis functions of total order p in dimension d can be calculated to

K = |Id,p| =
(p+ d)!

p!d!
.

The PC basis functions Ψi(ξ) are orthogonal,

(A.6) E[ΨiΨj ] = δi,jE[Ψ2
i ],

because of the orthogonality of Ψik(ξk) and the independence of ξk. As p→∞, the truncated
PCE in (A.3) converges in the mean-square sense if and only if the following two conditions
are fulfilled: (1) u(ξ) has finite variance, and (2) the coefficients αi are computed from the
projection equation [23]

(A.7) αi =
E[ûΨi]

E[Ψ2
i ]
.

A.1. Global sensitivity analysis. The expensive, deterministic high-fidelity particle accel-
erator model, M, is described by a function ~u = M(~x), where the input ~x is a point inside
D (cf. Figure 2) and ~u is a vector of QoIs. Finding correlations in these high-dimensional
spaces is nontrivial; however, it is vital for a deep understanding of the underlying physics.
For example, reducing the search space is of great interest in the modeling and optimization
process. In the spirit of Sobol’ [38], let ~u∗ = M(~x∗) be the sought (true) solution. The local
sensitivity of the solution ~u∗ with respect to xk is estimated by (∂~u/∂xk)~x=~x∗ . On the con-
trary, the global sensitivity approach does not specify the input ~x = ~u∗; it only considers the
model M(~x). Therefore, global sensitivity analysis should be regarded as a tool for studying
the mathematical model rather than a specific solution (~x = ~x∗).

Following [38], the problems that can be studied, in our context, with global sensitivity
analysis can be categorized the following way:

1. ranking of variables in ~u =M(x1, x2, . . . , xn), and
2. identifying variables with low impact on ~u.

In this article, we use the Sobol’ indices [38], which are widely used due to their generality.
Results can be found in section 4.5.
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The first-order PC-based Sobol’ index, Sk, represents the individual effects of the random
input ξk on the variability of u(ξ) and is given by

(A.8) Sk =
1

Var[u(ξ)]

∑

i∈Ik
α2
i E[Ψ2(ξi)], Ik = {i ∈ Nd0 : ik > 0, im6=k = 0}.

To compute Sk, all random inputs except ξk are fixed. As a consequence, Sk does not include
effects arising from the interactions between ξk and the other random inputs. This also means
that Ik includes only the dimension k.

The fractional contribution to the total variability of u(ξ) due to parameter ξk, considering
all other model parameters, is given by

(A.9) STk =
1

Var[u(ξ)]

∑

i∈ITk

α2
i E[Ψ2(ξi)], ITk = {i ∈ Nd0 : ik > 0}.

The set of multi-indices ITk includes dimension k among others.
Now we are in a position to rank the importance of the variables. The smaller STk is, the

less important the random input, ξk, becomes. We note, for the extreme case STk � 1, that
the variable ξk is considered to be insignificant. In such a case, the variable can be replaced
by its mean value without considerable effects on the variability of u(ξ). We will make use of
this fact when discussing the model problem and use STk as a measure to identify the most
important random inputs of the model.

If one is interested in the fraction of the variance that is due to the joint contribution of
the ith and jth input parameters, we can easily compute

(A.10) Si,j =
1

Var[u(ξ)]

∑

i∈Ii,j
α2
i E[Ψ2(ξi)], Ii,j = {i ∈ Nd0 : ii > 0, ij > 0},

which describes this quantity. The set Ii,j of multi-indices includes dimensions i and j, among
others.

As an example of category 1 from above, consider a problem where xi and xj are two
entries in the matrix of the second-order moments of the initial particle distribution within a
simulation. We then find that Si and Sj are both much smaller than Si,j . Such a situation will
indicate that other entries in the matrix of second-order moments significantly contribute. For
category 2, refer the reader to [38, section 7], where an approximation of S is proven, when
not considering all elements of ~x.

Appendix B. Wiener–Askey PC.

Appendix C. Legendre polynomials. The Legendre polynomials, or Legendre functions
of the first kind (C.1) [55, p. 302], are solutions to the Legendre differential equation, a
second-order ordinary differential equation

(C.1) (1− x2)d
2y

dx2
− 2x

dy

dx
+ l(l + 1)y = 0.
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414 ANDREAS ADELMANN

Table 8
The correspondence of Wiener–Askey PC and the pdf of the random variables [23].

ρ(ξk) Polynomial Support

Beta Jacobi [a,b]

Uniform Legendre [a,b]

Gaussian Hermite (-∞,+∞)

Gamma Laguerre (0,+∞)

In case of l ∈ N , the solutions are polynomials Pn. The first few polynomials relevant to this
paper are shown in (C.2):

P0(x) = 1,

P1(x) = x,

P2(x) = 1/2(3x2 − 1),(C.2)

P3(x) = 1/2(5x3 − 3x),

P4(x) = 1/8(35x4 − 30x2 + 3).

. . .
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Numerical challenges in the use of polynomial chaos representations for stochastic processes, SIAM
J. Sci. Comput., 26 (2004), pp. 698–719, https://doi.org/10.1137/S1064827503427741.

[34] M. S. Eldred, Recent advances in non-intrusive polynomial chaos and stochastic collocation methods
for uncertainty analysis and design, in 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference, 2009.

c© 2019 SIAM and ASA. Published by SIAM and ASA under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

01
/1

6/
20

 to
 1

29
.1

29
.2

14
.1

79
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 

https://arxiv.org/abs/1307.0065
https://doi.org/10.1137/S1064827501387826
https://doi.org/10.1137/060663660
https://doi.org/10.1137/S1064827503427741


416 ANDREAS ADELMANN

[35] S. Hosder, R. W. Walters, and R. Perez, A non-intrusive polynomial chaos method for uncertainty
propagation in CFD simulations, in 44th AIAA Aerospace Sciences Meeting and Exhibit AIAA-2006-
891, 2006.
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