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Particle accelerators are invaluable tools for research in the basic and applied sciences, such as
materials science, chemistry, the biosciences, particle physics, nuclear physics and medicine.
The design, commissioning, and operation of accelerator facilities is a nontrivial task, due to the
large number of control parameters and the complex interplay of several conflicting design goals. The
Argonne Wakefield Accelerator facility has some unique challenges resulting from its purpose to carry
out advanced accelerator R&D. Individual experiments often have challenging beam requirements, and
the physical configuration of the beam lines is often changed to accommodate the variety of supported
experiments. The need for rapid deployment of different operational settings further complicates the
optimization work that must be done for multiple constraints and challenging operational regimes.
One example of this is an independently staged two-beam acceleration experiment which requires the
construction of an additional beam line (this is now in progress). The high charge drive beam, well
into the space charge regime, must be threaded through small aperture (17.6 mm) decelerating
structures. In addition, the bunch length must be sufficiently short to maximize power generation
in the decelerator. We propose to tackle this problem by means of multiobjective optimization
algorithms which also facilitate a parallel deployment. In order to compute solutions in a meaningful
time frame, a fast and scalable software framework is required. In this paper, we present a general-
purpose framework for simulation-based multiobjective optimization methods that allows the automatic
investigation of optimal sets of machine parameters. Using evolutionary algorithms as the optimizer
and OPAL as the forward solver, validation experiments and results of multiobjective optimization
problems in the domain of beam dynamics are presented. Optimized solutions for the new high charge
drive beam line found by the framework were used to finish the design of a two beam acceleration
experiment. The selected solution along with the associated beam parameters is presented.
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I. INTRODUCTION

Particle accelerators play a significant role in many
aspects of science and technology. Fields such as material
science, chemistry, the biosciences, particle physics,
nuclear physics, and medicine depend on reliable and
effective particle accelerators, both as research and practical
tools. Achieving the required performance in the design,
commissioning, and operation of accelerator facilities is a
complex and versatile problem. Despite the success of on-
line models in some facilities [1], and various model
dependent and model independent tuning and optimization
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techniques, empirical tuning by operators is a common
method used at many research facilities. When the beam
dynamics is nonlinear, as is the case with space charge,
simple and fast models are applicable only in a very
restricted manner. This further complicates any multiob-
jective optimization by complicating the model. In order to
be able to reliably identify optimal configurations of
accelerators, we solve large multiobjective design optimi-
zation problems to automate the investigation for an ideal
set of tuning parameters. This approach has been used in
the past with much success [2–12]. The difference here
being the implementation and application to a problem at
the Argonne Wakefield Accelerator Facility (AWA).
A hallmark of the AWA facility is the flexibility to swap

physical components in the beam lines, which enables
different, often novel, accelerator research experiments to
take place. Not only do the physical machine components
change, the beam characteristics also vary considerably to
meet different needs. The facility operates at both low and
high charge (up to 100 nC), and at high charge strong
nonlinearities require a full 3D space charge approach in
simulations. Finding optics solutions in this regime, espe-
cially when there are additional constraints such as the
small aperture two-beam accelerating structures, is chal-
lenging even without the quick turnaround of the beam line
configurations. Therefore, it has been an important research
objective to develop a precise, e.g., 3D model embedded
into a multiobjective optimization framework that may be
used as a flexible platform for optimization of changing
machine configurations operated at different charge levels.
While other codes, such as GPT [13] and ELEGANT [14], also
have integrated genetic optimization algorithms; the OPAL

[15] framework differentiates itself by being open source
(i.e., free to use), massively parallel, and fully 3D.
A modular multiobjective software framework was

developed (see Fig. 1) where the core functionality of
the optimizer is decoupled from the “beam dynamics” but
fully integrated in the OPAL framework. To that end, we use
a master/slave mechanism where a master process governs
a set of slave processes given some computational tasks
(beam dynamics simulation) to complete. This separation
allows easy interchange of optimization algorithms, for-
ward solvers and optimization problems. A “pilot” coor-
dinates all efforts between the optimization algorithm and
the beam dynamics task. Details of the code implementa-
tion, e.g. framework components, optimizer, and forward
solver implementation, and parallelization, can be found in
the Supplemental Material at [16]. In combination, this
forms a robust and general framework for massively
parallel multiobjective optimization. Currently the frame-
work offers one concrete optimization algorithm, an evolu-
tionary algorithm employing a NSGA-II selector [17,18].
Normally, simulation based approaches are plagued by
the trade off between level of detail and time to solution.

This problem is addressed later in Sec. IV B 1 by
using forward solvers with different time and resolution
complexity.
The framework used here, incorporates the following

three contributions: (1) Implementation of a scalable
optimization algorithm capable of approximating Pareto
fronts in high dimensional spaces, (2) design and imple-
mentation of a modular framework that is simple to use and
deploy on large scale computational resources, and (3) dem-
onstration of the usefulness of the proposed framework on a
real world application in the domain of particle acceler-
ators. This is done with the optimization problem set as the
high charge photoinjector at the AWA.
The next section introduces the notation of multiobjective

optimization theory and describes the first implemented
optimizer. Avalidation and a proof of concept application in
the beam dynamics problems mentioned above is discussed
in Sec. IV. The implementation of the framework and
forward-solver is discussed in Supplemental Material
at [16].

II. MULTIOBJECTIVE OPTIMIZATION

Optimization problems deal with finding one or more
feasible solutions corresponding to extreme values of
objectives. If more than one objective is present in the
optimization problem this is called a multiobjective opti-
mization problem (MOOP). A MOOP is defined as

min fmðxÞ; m ¼ 1;…;M; ð1Þ

s:t: gjðxÞ ≥ 0; j ¼ 0;…; J; ð2Þ

FIG. 1. Multiobjective framework: the pilot (master) solves the
optimization problem specified in the input file by coordinating
optimizer algorithms and workers running a forward solver.
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xLi ≤ x ¼ xi ≤ xUi ; i ¼ 0;…; n; ð3Þ

where f denotes the objectives (1), g the constraints (2), and
x the design variables (3). Often, conflicting objectives are
encountered, and this complicates the concept of optimal-
ity. Pareto optimality is often used in such situations. The
set of Pareto optimal points forms the Pareto front or
surface. All points on this surface are considered to be
Pareto optimal. Sampling Pareto fronts is far from trivial. A
number of approaches have been proposed, e.g., evolu-
tionary algorithms [19], simulated annealing [20], swarm
methods [21], and many more [22–25]. In the next section,
we briefly introduce the theory of evolutionary algorithms
used in the present work.

A. Evolutionary algorithms

Evolutionary algorithms are loosely based on nature’s
evolutionary principles to guide a population of individuals
towards an improved solution by honoring the “survival of
the fittest” principle. This “simulated” evolutionary process
preserves entropy (or diversity in biological terms) by
applying genetic operators, such as mutation and crossover,
to remix the fittest individuals in a population. Maintaining
diversity is a crucial feature for the success of all evolu-
tionary algorithms.
In general, a generic evolutionary algorithm consists of

the following components: (i) Genes: traits defining an
individual, (ii) Fitness: a mapping from genes to a fitness
value for each individual, (iii) Selector: selecting the k
fittest individuals of a population based on some sort of
ordering, (iv) Variator: recombination (mutations and
crossover) operators for offspring generation.
Applied to multiobjective optimization problems, genes

correspond to design variables. The fitness of an individual
is loosely related to the value of the objective functions for
the corresponding genes. Figure 2 schematically depicts the
connection of the components introduced above. The
process starts with an initially random population of
individuals, each individual with a unique set of genes
and corresponding fitness, representing one location in the
search space. In the next step, the population is processed
by the selector determining the k fittest individuals accord-
ing to their fitness values. While the k fittest individuals are
passed to the variator, the remaining n − k individuals are
eliminated from the population. The VARIATOR mates and
recombines the k fittest individuals to generate new off-
spring. After evaluating the fitness of all the freshly born
individuals a generation cycle has completed and the
process can start anew.
Since there already exist plenty of implementations of

evolutionary algorithms, it was decided to incorporate
the PISA library [18] into our framework. One of the
advantages of PISA is that it separates variator from
selector, rendering the library expandable and configurable.
Implementing a variator was enough to use PISA in our

framework and retain access to all available PISA selectors.
As shown in Fig. 2, the selector is in charge of ordering a
set of d-dimensional vectors and selecting the k fittest
individuals currently in the population. The performance of
a selector depends on the number of objectives and the
surface of the search space. So far, the NSGA-II selector
[17] has been used and exhibits satisfactory convergence
performance.
The task of the variator is to generate offspring and

ensure diversity in the population. The variator can start
generating offspring once the fitness of every individual of
the population has been evaluated. This explicit synchro-
nization point defines an obvious bottleneck for parallel
implementations of evolutionary algorithms. In the worst
case, some message passing interface processes are taking a
long time to compute the fitness of the last individual in the
pool of individuals to evaluate. During this time all other
resources are idle and wait for the result of this one
individual in order to continue to generate and evaluate
offspring. To counteract this effect, the selector is already
called when two individuals have finished evaluating their
fitness, lifting the boundaries between generations and
evaluating the performance of individuals. New offspring
will be generated and message passing interface processes
can immediately return to work on the next fitness
evaluation. Calling the selector more frequently (already
after two offspring individuals have been evaluated) results
in better populations since bad solutions are rejected earlier.
On the other hand, calling the selector more often is
computationally more expensive. Note this capability is
also present in Cornell’s [2] and GPT’s [13] optimization
system.

FIG. 2. Schematic view of interplay between selector and
variator. The selector ranks all individuals in the population
according to fitness and subsequently the variator uses the fittest
individuals to produce new offspring. Finally, the new children
are reintroduced in the population.
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The variator implementation uses the master/slave archi-
tecture, presented in the next section, to run as many
function evaluations as possible in parallel. Additionally,
various crossover and mutation policies are available for
tuning the algorithm to the optimization problem.

III. THE FRAMEWORK

Simulation based multiobjective optimization problems
are omnipresent in research and industry. These simulation
and optimization problems are in general very big and
computationally demanding. This motivated us to design a
massively parallel general purpose framework. The key
traits of such a design can be summarized as: (i) support
any multiobjective optimization method, (ii) support
any function evaluator: simulation code or measurements,
(iii) offer a general description/specification of objectives,
constraints, and design variables, (iv) run efficiently
in parallel on current large-scale high-end clusters and
supercomputers.

A. Related work

Several similar frameworks, e.g., [26–29], have
been proposed. Commonly these frameworks are tightly
coupled to an optimization algorithm, e.g., only providing
evolutionary algorithms as optimizers. Users can specify
optimization problems, but cannot change the optimization
algorithm. Our framework follows a more general
approach, providing a user-friendly way to introduce
new or choose from existing built-in multiobjective opti-
mization algorithms. Tailoring the optimization algorithm
to the optimization problem at hand is an important feature
due to the many different characteristics of optimization
problems that should be handled by such a general
framework. As an example, it is shown how PISA [18],
an existing evolutionary algorithm library, was integrated
with ease. Similarly, other multiobjective algorithms could
be incorporated and used to solve optimization problems.
The framework presented in [29] resembles our imple-

mentation the most, aside from their tight coupling with an
evolutionary algorithm optimization strategy. The authors
propose a plug-in based framework employing an island
parallelization model, where multiple populations are
evaluated concurrently and independently up to a point
where some number of individuals of the population are
exchanged. This is especially useful to prevent the search
algorithm getting stuck in a local minimum. A set of default
plug-ins for genetic operators, selectors and other compo-
nents of the algorithms are provided by their framework.
User-based plug-ins can be incorporated into the frame-
work by implementing a simple set of functions (See
Supplemental Material [16]).
Additionally, as with simulation based multiobjective

optimization, we can exploit the fact that both the optimizer
and simulation part of the process use a certain amount of

resources. The ratio of work between optimizer and
simulation costs can be reflected in the ratio of number
of processors assigned to each task. This not only provides
users with great flexibility in using any simulation or
optimizer, but renders influencing the role assignment easy
as well.

IV. EXPERIMENTS

In this section numerical results of the validation bench-
mark and optimization of a photoinjector operated in the
space charge dominated regime is presented.

A. Optimizer validation

To ensure that the optimizer works correctly, the bench-
mark problem presented in [30],

FIG. 3. The hypervolume for a two-objective optimization
problem corresponds to the shaded area formed by the dashed
rectangles spanned by all points on the Pareto front and an
arbitrary selected origin po.

FIG. 4. Variator benchmark after 1100 function evaluations
using binary crossover and independent gene mutations (each
gene mutates with probability p ¼ 1

2
) on a population of 100

individuals.
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was solved with the framework. To that end, we use a
metric for comparing the quality of a Pareto front. Given a
point in the Pareto set, we compute the m dimensional
volume (for m objectives) of the dominated space, relative
to a chosen origin. This is visualized for 2 objectives in
Fig. 3. For further information and details of the imple-
mentation see [31]. Figure 4, and the corresponding
hypervolume values in Table I, show expected conver-
gence. The reference Pareto front is well approximated. It

took a total of 1100 function evaluations to perform this
computation. The hypervolume of the reference solution
(0.6575) for our benchmark was computed by sampling the
solution provided in [30]. Table I shows satisfactory
convergence to the sampled reference Pareto front after
1000 (plus the additional 100 evaluations for the initial
population) function evaluations.

B. AWA photoinjector optimization

Next the optimization framework is applied to the high
charge beam line at the Argonne Wakefield Accelerator
(AWA) facility. The goal of this optimization is to produce
beams of electrons that meet design specifications; this
includes number of particles (charge), energy, and particle
distribution (characterized by beam sizes and energy
spread). As shown in Fig. 5, the installed portion of the
beam line consists of an rf photocathode gun, two sol-
enoids, and six linear accelerating cavities followed by four
quadrupoles and a stripline kicker. The charge of interest,
40 nC, is needed for two beam acceleration (TBA) experi-
ments performed at the AWA [32,33], which motivates this
work. Prior experimental results were limited by beam size
when the beam passed through small aperture wakefield
structures located downstream. In an attempt to maximize
charge transmission in upcoming experiments, magnet
strengths of the solenoids and quadrupoles leading into
the TBA section of the beam line were optimized, shown in
Fig. 6. The simulation model includes all elements from the
gun to the septum. The optimization location is chosen as
the entrance to the first quadrupole on the dog leg (s3), see
Fig. 6. Minimizing beam sizes here will enable capture and

TABLE I. Convergence of benchmark problem with errors
relative to hypervolume of sampled reference solution.

Total function evaluations Hypervolume Relative error

100 0.859 753 3.076 × 10−1

200 0.784 943 1.938 × 10−1

500 0.685 183 4.210 × 10−2

900 0.661 898 6.689 × 10−3

1100 0.657 615 1.749 × 10−4

FIG. 5. Side view of the high charge linac at the AWA. All hardware in this drawing is currently installed. Note locations s1 and s2,
before and after the kicker.

FIG. 6. Continuation of the high charge beam line layout at the AWA, top view. This is the proposed two beam acceleration section.
Only the kicker in this drawing is installed. Note s3, the entrance to the fifth quadrupole on the beam line. This is the optimization
location.
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further focusing before space charge effects dominate the
beam. This will also enable cleaner transport through
downstream elements.
In addition to addressing the challenge of producing an

optimized beam, this model was chosen to demonstrate
the ability of the framework to tackle large problems.
Six design variables and objectives were used, along
with three constraints. The objectives include transverse
and longitudinal beam sizes, transverse momentum,
and longitudinal energy spread. The design variables
include the two gun solenoids and the first four quadru-
poles strengths. This problem encompasses high
dimensionality and nonlinear effects such as space
charge. Using this model it was possible to find good
solutions that meet the operational goals for the new
beam line. One of these solutions is presented in the next
section.

1. Time step scan

Before running a full scale optimization of the problem
described in Sec. IV B, a study on time step and number of
particles in the simulation model was done to reduce the
time of the simulation while maintaining the physics of
interest. The grid size 16 × 16 × 32 was chosen, and
parallelized in the x and y directions. After comparing
several options (1000, 10 000, 20 000, 50 000, 100 000)
with a small time step, the number of particles was fixed at
10 000. Next several time steps were explored, see Table II.
The largest steps were too big to resolve the beam
parameters accurately. See low fidelity plot in Fig. 7 for
dT ¼ 5 × 10−11 results.
In the drifts and linac tanks, dT ¼ 1 × 10−11 was

sufficient. However, it was not acceptable near the quadru-
poles. For all models, the longitudinal parameters (rmss and
energy) are calculated correctly, but discrepancies are seen
in the transverse (rmsx and ϵx) for low fidelity results. This
discrepancy is what led to the decision to adjust the time
steps with respect to beam line elements. In the linac and
drift sections dT ¼ 1 × 10−11 was used. Near sensitive
elements such as the quadrupoles, kicker, and septum, a
time step of dT ¼ 1 × 10−12 was used. The resulting
simulations are low fidelity in most places, but closely
approximate the mid fidelity simulations for metrics of
interest, as shown in Fig. 7. Midfidelity simulations used
steps of dT ¼ 1 × 10−12 everywhere. The average run time
of each simulation with the adjusted time steps was
1.6 minutes. In comparison, the midfidelity simulation

TABLE II. Checkmarks (✓) indicate desired beam parameters
are resolved at that time step. An (✗) indicates the time step is too
large, and results are nonphysical.

Time Step, dTðsÞ Linac Drift Quadrupoles

5 × 10−10 ✗ ✗ ✗

1 × 10−10 ✗ ✗ ✗

5 × 10−11 ✗ ✗ ✗

1 × 10−11 ✓ ✓ ✗

5 × 10−12 ✓ ✓ ✗

1 × 10−12 ✓ ✓ ✓

FIG. 7. Comparison of different fidelity models (dT stands for time step).
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ran for 18 minutes. Note, a smaller time step, 1 × 10−13, is
always used in the gun where the beam has low energy and
is changing rapidly.

2. Hyper parameter scan

While the optimization problem and goals were well
defined (Sec. IV B), it was not clear what the best hyper-
parameters for the genetic algorithm would be. These
parameters include gene mutation probability, mutation
probability, recombination probability, number of individ-
uals, and number of generations to complete. Given the
beam line in Fig. 5, four small optimization experiments
were done with various hyperparameters. Similar to the
time step scan, the goal of this exercise was to determine
which set of optimization parameters strongly influence the
results, and whether there was a time to solution difference.
From here on, we will reference each experiment as ex-1,
ex-2, ex-3, and ex-4 as shown in Table III.
The maximum number of individuals per generation was

fixed at 80. This number was chosen based on the node
architecture, and to prevent a prohibitive computational

cost. Each experiment was allowed to run for twenty-four
hours, with a maximum generation limit of 100. We
reduced the six objectives to four, and shortened the
simulation time by moving the objectives further upstream
to s1 and s2, the locations before and after the kicker, see
Fig. 6. The objectives include: εxðs ¼ s1Þ; εxðs ¼ s2Þ,
rmssðs ¼ s1Þ, and rmssðs ¼ s2Þ. An example OPAL input
file, used to perform the optimization in ex-1, can be found
in Supplemental Material at [16]. All other optimization
runs in the paper follow this template.
After collection of the data for all four experiments,

several metrics were compared, including number of gen-
erations completed in twenty-four hours and Pareto fronts at
s1 and s2, see Fig. 5. From Table III, we clearly see ex-3 is
significantly slower, as it evaluated only 53 generations
compared to the experiment with the maximum number,
ex-1 at 96 generations. Perhaps this trade off would be
acceptable if the Pareto frontwas significantly improved, but
from Fig. 8, this is not the case. Similar arguments can be
made for ex-2, which evaluated about 15 fewer generations.
The Pareto fronts at s2, are nearly identical. It is expected this
trend would continue given more time. When looking at the
Pareto front at s1, only ex-4 has a slightly larger range
compared to the others.With ex-2 and ex-3 eliminated due to
evaluation time, and a slightly better Pareto front at s1 for
ex-4, the hyperparameters in ex-4 were chosen as the default
values for subsequent runs.

3. TBA optimization problem

With computational and hyperparameters set, the opti-
mization problem of interest is explored. The objectives
(beam sizes and energy spread) are calculated at s3¼19.4m,
located downstream of the septum, see Fig. 6. Given the
longitudinal location of s3 (unless otherwise noted), we
define the objectives and input parameters as:

TABLE III. Input parameters for initial twenty-four hour
AWA optimization experiments. The gene mutation probability
was equal to the mutation probability (not shown) in all
four experiments. The maximum number of individuals per
generation was 80.

Experiment

Gene
mutation
probability

Recombination
probability

Number of
completed
generations

ex-1 0.1 0.9 96
ex-2 0.3 0.7 81
ex-3 0.8 0.2 53
ex-4 0.01 0.09 95

(a) (b)

FIG. 8. Comparison of Pareto fronts for initial optimization experiments, ex-1 through ex-4. (a) Pareto fronts for ex-1 through ex-4
at s1, (b) Pareto fronts for ex-1 through ex-4 at s2.
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min rmsx; rmsy ð5Þ

rmspx; rmspy; ð6Þ

rmss; dE ð7Þ

constraints rmsx < 0.1ðmÞjs¼s1 ð8Þ

rmsy < 0.1ðmÞjs¼s1 ð9Þ

jrmsy − rmsxj < 0.005ðmÞjs¼s1 ð10Þ

subject to q ¼ 40ðnCÞ ð11Þ

VoltGun ¼ 64ðMV=mÞ ð12Þ

VoltLinac ¼ 24 or 25ðMV=mÞ ð13Þ

Rx ¼ Ry ¼ 9ðmmÞ ð14Þ

ϕgun ¼ −20° ð15Þ

ϕlinac ¼ −20°: ð16Þ

The first four objectives, parameters (5) to (6), minimize
the transverse (rmsx;y) beam size and transverse momentum
(rmspx;py) at the location of interest in the beam line (s3, see
Fig. 6). Minimizing the beam size at this location is
essential to preventing loss of particles by scraping; which
ensures better transmission through the wakefield struc-
tures downstream. These structures are called power
extractor and transfer structure (PETS), and will be located
after the septum and quadrupoles in Fig. 6. This device is
putting the tightest constraints on the beam parameters. The
aperture diameter is 17.6 mm and the bunch length should
be below 2 mm to facilitate large power extraction [34].
Less divergence in the beam (lower transverse momentum
spread) reduces growth of transverse beam size after the
focal point (location of min beam size). This reduces halo
by ensuring the beam is not over focused through a hard
waist. The momentum spread is also critical to preventing
large growth during transport. All of these factors help with
transmission downstream.
The next two objectives in parameter (7) minimize the

longitudinal beam size (rmss), and energy spread (dE) at
location s3. This helps reduce the transverse beam size
growth in bending elements. A small bunch length (rmss) is
also critical to the goals of TBA experiments. The power
generated in the wakefield structures designed for TBA is
related to the bunch length [33,34]. Equations (8) to (10)
define three constraints used to guide the algorithm.
However, it is important to not overconstrain the problem,
which would prevent the algorithm from converging.
The difference constraint, Eq. (10), is used to favor nearly

round beams. This prevents one dimension from becoming
disproportionately large compared to the other. At the
AWA, there is some room in the beam pipe to allow the y
dimension to grow, but round beams are preferred.
Equations (11) to (16) define the charge, gun voltage,
linac voltages, laser radius, gun phase, and linac cavity
phases (in that order). These are parameters in the simu-
lation that must be defined, but do not vary during the
optimization. For setup of the AWA design variables,
objectives, and constraints in the OPAL input file, refer
to the repository above.
Design variables include the currents in two gun

solenoids (IBF and IM), and four quadrupole strengths
(KQ1-KQ4). The objectives include beam size (transverse
and longitudinal), transverse momentum, and energy
spread as defined in Eqs. (5) to (7). The location at the
entrance of the kicker is s1 ¼ 16.45 (m), and the objectives
are optimized at location s3 ¼ 19.4 (m). This is the
entrance to the fifth quad in the beam line. This location
is where the beam should be captured and focused through
subsequent elements.

4. AWA optimization results

All simulations for this experiment were carried out on
Bebop, a high performance computing (HPC) cluster
provided by the Laboratory Computing Resource Center
(LCRC) at Argonne National Laboratory (ANL). Intel
Knights Landing (KNL) processors at 1.3 GHz with
128 GB of memory and 64 cores per node were used
for all runs. There are 352 compute nodes available on
Bebop, with a total of 22,528 cores. All jobs were run and
compared on 8 cores each, which allowed 8 jobs per node
on the KNLs. This in combination with the number of
nodes available allows for very large optimization jobs, like
the AWA case. Typical runs for this paper used 41 nodes,
which corresponds to 2624 KNL cores and a generation
size of 328 individuals.
With the time steps and hyperparameters set by the work

in Sec. IV B 1, the optimization problem described in
Sec. IV B was run for 200 generations. The initial number
of individuals was fixed at 656, and the minimum number
individuals in later generations was fixed at 328. These
numbers were in part based on the architecture of the
KNL’s. Since each simulation takes 8 cores, and there are
64 cores per KNL node, a large population size that would
fit evenly on these resources was chosen. Again, the
location of optimization is s3 ¼ 19.4 (m).
As expected, the x dimension is impacted by the bending

elements, and unable to reach the small beam sizes seen in
the y dimension. This suggests objectives in the x dimen-
sion will drive design variable choices used during oper-
ations. However, it is still necessary to include the y
dimension in the optimization. Early optimization tests
showed the y dimension can easily grow out of control if it
is not included in the objectives. Those results are not
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shown here due to the unfeasible nature of the solutions
(i.e., rmsy larger than the beam pipe). In the case of bunch
length, there are not many options to choose from, as the
phase was not varied. With these observations in mind,
several beam parameters corresponding to options on the
Pareto Front in Fig. 9 were plotted and compared. A select
result is shown in Fig. 10, with corresponding parameters
shown in Table IV. The maximum beam sizes are well
below the beam pipe aperture limits, also shown in Fig. 10.
The solution is nearly round, which will increase chances
of keeping the beam nearly round as it travels to the last
triplet in Fig. 6. Overall this solution is satisfactory, and
meets all requirements for the new TBA beam line at
the AWA.

The TBA line under construction includes a kicker and
septum combination to route one bunch train to its own
PETS, while the other bunch train is undeflected and goes
to a different PETS. The optimization results shown here
start at the gun and go through to the first quadrupole after
the septum [s3 ¼ 19.4 (m)]. These results were used as the
basis for the full solution up to the PETS [35]. After
adjustments to include 3D rf field maps and CSR in the
dipoles [35], the maximum beam sizes at the PETS location
were below 10 mm with a bunch length of rmsz ¼ 1.6 mm.
Although the simulation results at the PETS location
cannot yet be verified, since the beam line is not yet
completely installed, some checks have been possible for
the partially completed beam line. For example, beam
images were taken on the YAG screen located downstream
of the kicker, and it was found that the extracted beam sizes
at different kicker angles were in good agreement with
simulation results [35]. When it becomes possible to test
the complete simulation solution, it is expected that there
will not be perfect agreement with simulation; for example
there may be errors in the fields of beam line elements.
However, the simulation can be a tool to track down the
source of discrepancies, such as understanding the effect of
the gun field on the beam symmetry. More importantly, the
optimization results should provide significant improve-
ment in efficiency for achieving a good operational regime.

V. CONCLUSIONS

A general-purpose framework for solving multiobjective
optimization problems was presented. Its modular design
simplifies the application to simulation-based optimization
problems for a wide range of problems and allows to
exchange the optimization algorithm. The flexibility of
being able to adapt both ends of the optimization process,
the forward solver and the optimization algorithm simulta-
neously not only leads to broad applicability but it
facilitates tailoring the optimization strategy to the opti-
mization problem as well.
The framework was integrated into OPAL, and used to

study a beam dynamics problem at the AWA. A scan of
time step and hyperparameters was done to determine
computational settings. Then a full scale physics optimi-
zation was performed. Optimization of the 3D beam size

FIG. 9. Pareto front comparing transverse beam sizes (rmsx;y)
and transverse momentum (rmspx;py). The yellow star indicates
the point plotted in Fig. 10.

FIG. 10. Optimized beam sizes along high charge beam line.
The gun is located at s ¼ 0, both x and y beam sizes are shown.
The black line represents the relevant beam line aperture, while
the vertical green line indicates the location of the optimization.

TABLE IV. Input parameters for the optimized solution shown
in Figs. 9 and 10.

Design Variable Unit Value

Buck focusing solenoid Amps 478
Matching solenoid Amps 197
Quadrupole 1 T-m −0.8
Quadrupole 2 T-m 0.9
Quadrupole 3 T-m 0.8
Quadrupole 4 T-m −1.0
Bunch length mm 1.5
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and energy spread was accomplished. The TBA beam line
presented is currently being installed at the AWA. Once
installation is complete, the results shown here will guide
future experiments at the AWA.
In contrast to approaches that are tightly coupled to the

optimization algorithm, the range of possible applications
is much wider. Even in cases where the mathematical
model of the forward solver is not known exactly, fixed or
real time measurements can be used to guide the search for
the Pareto optimal solutions. Finally, combining a multi-
objective optimization framework, such as the one pre-
sented, with practical experience in the field should
expedite the decision making process in the design and
operation of particle accelerators.
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