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MICHAL ODSTRČIL,1,2,* MIRKO HOLLER,1 JÖRG RAABE,1 AND
MANUEL GUIZAR-SICAIROS1

1Swiss Light Source, Paul Scherrer Institute, Villigen 5232, Switzerland
2Current address: Carl Zeiss SMT, Carl-Zeiss-Straße 22, Oberkochen 73447, Germany
*michal.odstrcil@zeiss.com

Abstract: As the resolution of X-ray tomography improves, the limited long-term stability and
accuracy of nanoimaging tools does not allow computing artifact-free three-dimensional (3D)
reconstructions without an additional step of numerical alignment of the measured projections.
However, the common iterative alignment methods are significantly more computationally
demanding than a simple tomographic reconstruction of the acquired volume. Here, we
address this issue and present an alignment toolkit, which exploits methods with deep-subpixel
accuracy combined with a multi-resolution scheme. This leads to robust and accurate alignment
with significantly reduced computational and memory requirements. The performance of the
presented methods is demonstrated on simulated and measured datasets for tomography and
also laminography acquisition geometries. A GPU accelerated implementation of our alignment
framework is publicly available.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Computed tomography (CT) and laminography (CL) methods enable 3D imaging and thus make
it possible to acquire statistically relevant information about a sample’s internal structure without
its destruction. This allows for unique imaging applications broadly applied in material research,
medicine, and industry, especially for in situ and ex situ studies. In particular, in combination with
high-resolution X-ray microscopy, 3D nano-imaging is important for many applications in biology
and materials science [1]. Two-dimensional sub-50 nm spatial resolution can be commonly
reached in X-ray microscopy [2–7] for sample thickness of up to tens of microns. However, this
high 2D resolution can be translated to comparable 3D resolution only if a sufficient number
of measured angular 2D projections of the sample provide mutually consistent information. If
the measured 2D projections are misaligned, the reconstruction quality deteriorates and the
achievable spatial resolution is limited [8,9]. Since reaching the level of accuracy and mechanical
stability required for sub-30 nm 3D resolution is currently not achievable and would drastically
increase the complexity of the measurement device, alignment of the measured 2D projections
during post-processing is an important step.

In the past decades, various methods for alignment of tomography projections were proposed,
such as marker-based methods [10–13], cross-correlation [14–17], bootstrap methods [18–26],
common-line [9,27–29], and feature matching [30,31]. However, each of the methods has some
drawbacks that hinder their application for high-accuracy alignment of large X-ray datasets. The
marker-based methods, often used in electron tomography, require significant effort during the
sample preparation and the subsequent marker detection. Furthermore, while for thin samples
prepared for electron microscopy a marker is clearly visible in the projection, this is often not
the case for majority of X-ray tomography samples. The cross-correlation-based methods suffer
from accumulation of subpixel errors resulting in poor sensitivity to misalignment between
angularly distanced projections. The common-line methods such as the center-of-mass method
[28,29] for estimation of the horizontal shift and the vertical-mass-fluctuation (VMF) method
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for estimation [28,29] of the vertical shift are limited to the parallel-beam tomography with
conventional geometry and cannot be used for more general 3D imaging geometries such as
cone-beam tomography, laminography or interior tomography [20,32,33]. Finally, the projection
matching alignment (PMA) methods [18–26] provide a very general way of projection alignment.
However, PMA applications are often limited by their high computational demands and their
convergence may depend on quality of the initial guess.

Fig. 1. Flow diagram describing our alignment strategy.

Here, we describe a framework for alignment of 3D imaging datasets commonly produced
by nanotomography, nanolaminography, and interior nanotomography. Our approach is also
well suited for other high-resolution 3D imaging methods such as vector and tensor tomography
[34–37] and non-rigid tomography [38]. The goal of our toolkit is to provide means for fast,
robust and fully automated alignment of large datasets, which are collected in modern synchrotron
3D nano-imaging experiments.

2. Projection alignment strategy

With respect to the broad range of challenges met for high-resolution 3D imaging, the ideal
alignment method needs to exhibit high robustness, low computational cost and high alignment
accuracy. In order to meet these requirements, we have based our alignment strategy on algorithms
with deep subpixel accuracy. The goal is to develop an approach that is able to align projections
downsampled to a significantly reduced spatial resolution and simultaneously reach sufficient
subpixel accuracy that allows for direct alignment of the full resolution dataset. This approach
differs from the conventional pyramidal method [18,19], where the low-resolution alignment is
used only as an initial guess in order to improve robustness, but the full resolution alignment step
needs to be still performed.
Solving the alignment problem in a lower resolution leads to a significant reduction of the

computational time. For example, the algorithmic complexity of alignment of M projections
by the cross-correlation-based methods is proportional to O(MN2 log N) and O(MN3) for the
projection matching methods, where N denotes the linear size of the reconstructed volume.
Additionally, solving the alignment task in a lower resolution reduces memory requirements,
improves angular sampling of the tomographic dataset according to the Crowther criterion [39],
and generally increases the average SNR in the downsampled projections. Therefore, as we will
demonstrate, our approach provides excellent results even for undersampled datasets with poor
signal-to-noise ratio (SNR).

In order to provide maximal alignment robustness under various experimental conditions, our
alignment strategy is based on the combined strength of three alignment methods as shown in
Fig. 1. After loading the projections, an initial alignment is performed using the cross-correlation
alignment (XCA) method. The next alignment step is provided by the vertical-mass-fluctuation
(VMF) common-line method. If assumptions of this method are satisfied, it provides a very fast
and accurate vertical alignment independent of any horizontal misalignment. If the assumptions
are not satisfied, e.g. in laminography, or interior tomography configurations, this prealignment
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step is skipped. The final alignment is then provided by our implementation of the multi-resolution
projection-matching alignment (MR-PMA) method.

3. Common contrast mechanisms in nanotomography

The combination of good penetration and high achievable resolution makes the hard X-ray
wavelength range a common choice for nanotomography imaging. X-ray nano-imaging commonly
relies on either of two contrast mechanisms: absorption or phase-shift. Due to broad variation
of 3D tomography tasks, our alignment methods were designed to be used with either of these
imaging modalities.
A consequence of the good penetration length of the hard X-ray photons is weak absorption

contrast. The complex-valued transmission T(x, y) can be approximated for thin samples as

T(x, y) = exp
(
2πi
λ

∫ LZ

0
[n(x, y, z) − 1] dz

)
, (1)

where λ is the imaging wavelength, n(x, y, z) denotes the local refractive index n = 1 − δ + iβ,
and LZ is the sample thickness. Since the material constant ratio δ/β is much larger than one
in the hard X-ray regime, phase imaging usually provides a significantly stronger signal, which
makes phase usually the better contrast modality for imaging and projection alignment.
However, phase-tomography has several major differences compared to the conventional

absorption-based approach. Firstly, whereas the attenuation PA(x, y) can be easily calculated
from the measured complex-valued projection as

PA(x, y) = log(|T(x, y)|) =
2π
λ

∫ LZ

0
β(x, y, z)dz , (2)

the phase is not uniquely determined by the measured complex-valued transmission T(x, y). If
the sample is sufficiently weakly phase-shifting, so that the maximal relative phase-shift φ(x, y)
is smaller than 2π, φ(x, y) can be recovered directly from the complex-valued projection as

φ(x, y) = − arg(T(x, y)) = −
2π
λ

∫ LZ

0
δ(x, y, z)dz. (3)

However, if the phase-shift exceeds 2π radians, phase unwrapping has to be performed [40] and
a unique solution exists only for well-behaved projections, i.e. when the signal to noise ratio is
high and the phase evolution is smooth without phase residua or vortices [41].

Additionally, each phase projection φ(x, y) can contain an arbitrary phase offset φ0 and if the
projections are reconstructed by ptychography [42], they also include an arbitrary linear phase
ramp [8,9]. As we discuss in Section 8, these degrees of freedom become constrained once the
aligned projections are adequately assembled in 3D space and thus they do not affect the final
imaging quality. However, this limited reliability motivated us to develop alignment methods
that are insensitive to these degrees of freedom and other potential systematic errors in the lowest
spatial frequencies.

4. Initialization by cross-correlation alignment (XCA) method

Alignment of the adjacent projections by the cross-correlation alignment (XCA) method [14–16]
is commonly used in cryo-electron tomography and a similar idea was tested for alignment of
X-ray datasets as well [17,24]. Assuming that the average translation between two ideally aligned
projections acquired at adjacent angles should be zero, an estimation of the relative shift between
the adjacent projections can be used for alignment.

The XCA method can be used with projections that are real- or complex-valued, for generality
we denote here the projections that we seek to align TΘ(x, y). Instead of simply estimating
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the mutual displacement between the raw projections, our implementation estimates the shift
between the local variance fields VΘ(x, y) of the projections defined as

VΘ(x, y) =
√
|∂xTΘ |2 + |∂yTΘ |2 , (4)

Since XCA serves only as an initial guess, we use the computationally cheaper central differences
for calculation of the gradients of the measured field TΘ instead of an FFT-based approach.
Since TΘ denotes a generally complex-valued field, our definition of VΘ does not require any

phase unwrapping. This definition has also other advantages, for example, it makes the XCA
insensitive to phase-residues, additional linear phase ramp, and potential errors in the lowest
spatial frequencies of TΘ. Although the XCA method can significantly reduce the positioning
error between projections acquired at adjacent angles, it is insensitive to a constant offset in the
center of rotation. Assuming that the rotation axis is perpendicular to the illumination beam
propagation direction and that the full angular range of 180 degrees is acquired, XCA between
projections acquired at 0 and 180 degrees can be used to estimate and correct for such offset of
the center of rotation [24].

In order to reduce the computational time and increase robustness against noise, the variance
fields VΘ are downsampled to a 4× lower resolution grid using the Gaussian pyramid approach
[43]. The total displacement for each projection can be calculated as a cumulative sum of the
registered displacements between projections measured at adjacent angles. A drawback of the
XCA method is accumulation of registration errors, in particular for datasets with large number
of projections.

5. Common-line method - vertical mass fluctuation (VMF)

Because the XCA prealignment does not use any knowledge about the imaging geometry, the
relative shift between angularly distanced projections can be still far from optimal. Therefore,
robustness of the entire alignment process can be further improved if an additional prealignment
method is used. Assuming the sample rotation around the vertical axis, parallel beam geometry,
and the field of view capturing the entire sample along the horizontal axis in each projection, the
vertical alignment can be estimated using a method called vertical mass fluctuation (VMF) [9].
VMF is a powerful and computationally cheap approach based on alignment of an integrated
conserved quantity that we denote here mΘ(y)

mΘ(y) =
∫

x
pΘ(x, y)dx . (5)

The vertical mass distribution mΘ(y) is independent of the rotation angle. In conventional
transmission X-ray microscopy, the quantity pΘ(x, y) can be either the attenuation PA(x, y) or the
unwrapped phase φ(x, y). A major advantage of the vertical-mass-distribution-based alignment
is its independence of the horizontal misalignment.

Due to the linearity of Eq. (5), a global offset or a linear slope in the preserved quantity pΘ(x, y)
will result in a linear offset in the vertical mass distribution mΘ(y). The same argument can be also
applied for propagation of potential errors in the lowest spatial frequencies of pΘ(x, y). In order
to make our analysis insensitive to these errors, the high-pass filtered vertical mass distribution
mΘ(y) by a linear operator is used for alignment, we denote the high-pass filter linear operator Fhp.
The vertical alignment is then performed as follows:

1. pΘ(x, y) is calculated for each projection, either from the unwrapped phase φ(x, y) or
attenuation PA(x, y).

2. pΘ(x, y) is integrated along the horizontal axis and high-pass filtered to calculate the vertical
mass distribution. Note that if the phase is used and the selected high-pass filter is a
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gradient filter, there is no need for phase unwrapping since the vertical phase-gradient ∂yφ
can be calculated analytically from the complex-valued projections TΘ using

∂yφ = Im

{
TΘ
|TΘ |2

F −1
[
2πuyF (TΘ)

]}
, (6)

where Im{} denotes the imaginary part and TΘ denotes the complex conjugate, uy is the
vertical reciprocal-space coordinate and F {} is the Fourier transform. However, this strong
high-pass filtering increases sensitivity of the VMF method to noise in the data.

3. A relative displacement between the one-dimensional VMF vectors is estimated

In order to guarantee a robust search in step 3) and avoid stagnation in local minima, the alignment
is performed by subpixel accuracy cross-correlation [44] of the filtered vertical mass fluctuation.
Since an optimal choice of the cross-correlation reference is important, we have selected the most
representative Fhp{mΘ} vector as the centroid position provided by K-means clustering [45].
If the assumptions of the VMF method are fulfilled, the vertical alignment provided by this

step can be considered to be final. Otherwise, the vertical alignment has to be refined in the final
alignment step.

6. Projection-matching alignment (PMA) method

At this point, our dataset is already prealigned by the cross-correlationmethod and, if the measured
dataset satisfies assumptions of the VMF method, the vertical alignment can be considered to be
final. However, in order to keep our alignment strategy general, we will assume that both the
vertical and the horizontal alignment have to be refined. Our final alignment step is performed by
a multi-resolution projection-matching alignment (MR-PMA) method.
The PMA methods [18–26], also called "iterative reprojection" or "bootstrap methods", are

based on the idea that even misaligned projections can be used for a 3D reconstruction, although
the quality can be suboptimal. Reprojections of this initial reconstruction will be closer to the
optimally aligned projections since only the consistent features are preserved in these synthetic
reprojections. Therefore, shifting of the measured projections to match these reprojections will
lead to improved reconstruction quality in the next iteration. Iterative application of this principle
leads progressive improvement of the reconstruction quality until convergence is reached.
An application of the multi-resolution approach for projection alignment has been already

demonstrated in [18,19]. Here, based on the same idea of multi-resolution processing, we
demonstrate that with an optimized implementation, this method can reach alignment with so
high accuracy in the coarse resolution levels that alignment at the finest resolution level does not
further improve the reconstruction quality.

Solving the PMA task in lower resolution not only reduces the computational cost, but also the
multi-resolution approach improves the robustness of the optimization. Essentially, assuming
that the projections contain some features at each spatial frequency, the coarser resolution makes
the optimization less sensitive to local properties of the measured projections and PMA becomes
more robust against stagnation. The ability of MR-PMA to reach deep subpixel accuracy is based
on the redundant information between the lowest spatial frequencies of the projections in the
3D Fourier space as indicated in Fig. 2. Since mutual displacement of the measured projections
results in a mismatch in these spatial frequencies, this discrepancy can be sensed and used for
correction by the PMA method.
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Fig. 2. Filling of the Fourier space by the tomographic projections (gray stripes). Darker
regions in the diagram denote regions with higher information redundancy.

PMA methods generally minimize the difference between the linearized measurements pΘ and
their reprojections p̂Θ defined as

p̂Θ = AΘA−1p , (7)

where the variable p denotes a stack of the measurements pΘi

p = [pΘ0 , pΘ1 , . . . , pΘn ] . (8)

The linear operator AΘ denotes a forward tomographic projection operator at angle Θ and the
inversion operator A−1 denotes generally any common tomography reconstruction method such
as filtered backprojection (FBP) or simultaneous algebraic reconstruction technique (SART). In
our implementation, we use FBP mainly because of its low computational cost and versatility
in non-standard imaging geometries [46]. Since the PMA computation is dominated by the
reprojection step, use of Fourier space reconstruction methods such as Gridrec [47] could be
beneficial only if the forward tomographic projection AΘ could be implemented efficiently in
Fourier space as well.
The displacement between the measurements pΘ and the reprojections p̂Θ is commonly

estimated by cross-correlation methods, which can be implemented with deep subpixel accuracy
[44,48,49]. However, we have observed that the cross-correlation-based methods may become
unstable if the data contains systematic errors. Additionally, the computational complexity of
these methods grows significantly with the aimed level of subpixel accuracy [49]. Therefore,
we have adopted an optimization approach inspired by the optical flow methods [50], which we
found to be more robust and can iteratively reach deep subpixel accuracy. The generalized PMA
optimization task can be expressed by the following cost function

min
∆xΘ,∆yΘ

WΘ Fhp {pΘ(x, y) − p̂Θ(x + ∆xΘ, y + ∆yΘ)}
 , (9)

where WΘ denotes reliability weights, which are equal to zero in missing or unreliable regions.
Given the same arguments as in the previous sections, both the measured data pΘ(x, y) and the
reprojections p̂Θ(x, y) are high-pass filtered by a linear operator Fhp in order to reduce the influence
of potential errors in the lowest spatial frequencies. These errors can originate either from
imperfections in the projection pΘ or inconsistencies in the reprojected model in Eq. (7), e.g.
due to the missing cone in laminography geometry.
By applying enough downsampling, we can assume without loss of generality that at the

coarsest resolution level the displacement errors are much smaller than 1 pixel. The optimal
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displacements ∆x(i)
Θ
, ∆y(i)

Θ
, which minimize the cost function Eq. (9) in the i-th iteration, can be

then estimated analytically as

∆x(i)
Θ
=

∑
W2
Θ
Fhp

{
∂xp̂(i)Θ

}
Fhp

{
p(i)
Θ
− p̂(i)
Θ

}
∑

W2
Θ

[
Fhp

{
p(i)
Θ
− p̂(i)
Θ

}]2 (10a)

∆y(i)
Θ
=

∑
W2
Θ
Fhp

{
∂yp̂(i)Θ

}
Fhp

{
p(i)
Θ
− p̂(i)
Θ

}
∑

W2
Θ

[
Fhp

{
p(i)
Θ
− p̂(i)
Θ

}]2 , (10b)

where ∂xp̂(i)Θ , ∂yp̂(i)Θ denote horizontal and vertical gradient of the reprojection p̂(i)
Θ
. The gradients

are calculated in Fourier space as

∂xp̂Θ = F −1 [2πiuxF (p̂Θ)] (11a)

∂yp̂Θ = F −1
[
2πiuyF (p̂Θ)

]
, (11b)

where ux and uy denotes the reciprocal-space coordinates. The estimated shifts ∆x(i)
Θ
, ∆y(i)

Θ
are

used to correct the displacements errors directly in the measured projections

p(i+1)
Θ
= F −1

{
exp

[
2πi

(
∆x(i)
Θ

ux + ∆y(i)
Θ

uy

)]
F

(
p(i)
Θ

)}
. (12)

The cost function, Eq. (9), needs to be optimized iteratively, because the corrected displacement
in p(i+1)

Θ
will lead to improved quality of the tomogram and therefore of the reprojections p̂(i+1)

Θ
.

The optimization is finished when the update step drops below a certain threshold γ/D

max
Θ

(
∆x(i)
Θ
,∆y(i)

Θ

)
< γ/D , (13)

where D is the downsampling level and γ is a small constant selected to be 10−2 for our application.
The gradients ∂xp̂Θ, ∂yp̂Θ are commonly approximated by their finite difference, and displace-

ment of the projections is typically approximated using by bilinear interpolation, which is applied
by a change of the projection tomographic geometry [18,19,21,24,25]. However, such strategy
is not able to provide the deep subpixel accuracy required to avoid iterative alignment without
downsampling. Additionally, it creates numerical noise that hinders convergence [24]. In contrast
to other works, we use Fourier transforms to calculate the gradients of the reprojection and to
apply the displacements to the measured projections in Eqs. (11) and (12). The discrete Fourier
transform is a formally invertible numerical transformation with high numerical accuracy and
stability and this is of great importance to achieve deep subpixel alignment accuracy.

7. Interpolation by offset discrete Fourier transform (DFT)

The multi-resolution optimization approach requires a way to upsample and downsample the
projections to different interpolation grids. The selection of the optimal interpolation methods is
critical to preserve the alignment quality between various interpolation grids and to preserve
the deep subpixel accuracy acquired in the coarse resolution levels. In our implementation, we
resample of the original signal x(n) of length N to a new signal x̂(n) of length M using the discrete
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Fourier interpolation with an offset of half of the sampling step

x̂(n) =
1
M

M−1∑
m=0

X(m) exp
[
2πi(n − 1/2)m

M

]
(14)

where x̂(n) denotes the resampled signal of length M, and the discrete inverse Fourier transform
of x(n) is computed also with an offset, namely, X(m) is given by

X(m) =

{∑N−1
n=0 x(n) exp

[
−2πi(n−1/2)m

N

]
if 0 ≤ m < M

0 if m ≥ M
(15)

The main motivation for this offset is to preserve the pixels centers after the interpolation,
i.e. there is no shift of the bulk properties such as center of mass of the projections. The
computational cost of the offset Fourier interpolation is comparable to the conventional discrete
Fourier interpolation, because we implement this offset interpolation using two fast Fourier
transformations with a linear phase ramp multiplication in the Fourier domain.

8. Ambiguities of 3D phase-imaging using ptychography

The global phase offset and linear phase ramp are inherent degrees of freedom of ptychography
[9]. Although the discussed alignment methods exhibit high robustness against various low-
spatial-frequency errors, the quantitative contrast of the final reconstruction can be guaranteed
only if these ambiguities are adequately constrained.
The conventional approach is to select regions in each frame that do not contain any sample

contribution [9,24] and subtract the phase ramp in each projection separately. However, this
approach may result in inaccuracies if the sample-free regions are not well detected, e.g. when
contrast of the sample is low, or if the sample projections do not contain enough empty regions
around the sample. Our approach here is based on the fact that not all possible phase ramps are
consistent with the 3D reconstruction, in other words tomographic consistency can be used to
deal with these ambiguities. Using the projection matching idea in Eq. (7), the optimal phase
ramp φΘ(x, y) = βΘ, xx + βΘ, yy + βΘ,0 at angle Θ can be found by minimization of the following
least-squares optimization task

min
βΘ, x,βΘ, y,βΘ,0

WΘ (
pΘ + βΘ, xx + βΘ, yy + βΘ,0 − p̂Θ

) , (16)

where pΘ denotes the unwrapped phase and WΘ are reliability weights. Without additional
boundary conditions, the conventional parallel beam tomography allows for two degrees of
freedom per tomogram: a shared phase ramp along the rotation axis direction and a shared phase
offset. The laminography geometry reduces the number of the degrees of freedom to a single
one: the shared phase offset. Although these maximally two scalar variables per tomogram still
need to be calibrated by some prior knowledge, robustness of the phase ramp removal process is
significantly improved because this knowledge does not need to be available for each projection.
An identical approach can be used for calibration of the absorption tomogram, for which

ptychography has an ambiguity in the overall amplitude of the reconstructed complex-valued
transmission.

9. Results for simulated tomography datasets

Our alignment framework is implemented in Matlab using the ASTRA framework [21,51] with
additional modifications [52]. The reconstructions were performed with CPU Intel Xeon E5-2690
and GPU Nvidia P100 and 512GB RAM.
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Fig. 3. (a) An axial slice through our phantom, (b) Horizontal displacement error before
(red) and after (blue) initial cross-correlation-based prealignment for Dataset 1.

Performance of the proposed alignment methods was first verified using a synthetic dataset. In
order evaluate our methods for a common class of samples in nanotomography, we have created
a phantom of 800×800×800 pixels of a porous structure with two material phases, shown in
Fig. 3(a), the structure was inspired in the nanostructure of catalyst materials. This phantom was
used to produce 1260 projections, which provide full angular sampling according to the Crowther
criterion [39]. The projections were displaced by a combination of a normally distributed random
offset with amplitude of 20 pixels and an angularly dependent sinusoidal offset with period of
90 degrees and amplitude of 20 pixels, as shown in Fig. 3(b). Three test datasets were created
using these projections. Dataset 1 was fully angularly sampled with noiseless projections, dataset
2 was 8× angularly undersampled, i.e. it contained only 161 noiseless projections with equal
angular sampling, and finally dataset 3 adds 10% of Gaussian noise to the dataset 2.
The XCA method is able to significantly reduce the initial positioning errors. As shown in

Fig. 3(b), the position variance between adjacent projections is significantly reduced. However,
the overall alignment of the projections, in particular between those with large angular distance,
is suboptimal, as expected. The remaining positioning errors for the three methods are detailed in
Table 1. The main advantage of the XCA method as a prealignment step is its low computational
cost. In this case, the variation calculation, shown in Eq. (4), and downsampling operation
required 7 s and the cross-correlation between all 1260 projections required additional 2 s. The
alignment quality, summarized in Table 1, is comparable for the first two tested datasets, but
the root mean square (RMS) error was increased for Dataset 3 due to noise-sensitivity of our
variance projection preprocessing in Eq. (4).

Table 1. Root mean square (RMS) displacement error for all three-alignment methods in pixel units.
Displacement error for MR-PMA were estimated after the final full-resolution refinement.

Dataset 1 Dataset 2 Dataset 3

Method
Vertical Horizontal Vertical Horizontal Vertical Horizontal

RMS [px] RMS [px] RMS [px] RMS [px] RMS [px] RMS [px]

Before alignment 23.9 24.5 25.1 24.7 25.1 24.7

XCA 0.55 1.6 0.6 1.2 6.2 6.8

VMF 0.0047 - 0.0042 - 0.17 -

MR-PMA 0.010 0.008 0.011 0.009 0.012 0.011
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Fig. 4. Root mean square (RMS) error of the positions recovered using the MR-PMA
method for different downsampling levels in tomography geometry. The RMS error for each
downsampling level was calculated in the original pixel size. (b) Number of iterations and
time per iteration needed to reach converge threshold in Eq. (13) for Dataset 1. In (a) and
(b), the result at previous downsampling level is provided as the initial guess for the next
higher resolution level. At downsampling of 4×, 2× and 1× only one iteration is needed due
to the deep subpixel accuracy at higher downsampling levels.

The following optional prealignmentmethod is VMF. In order to provide amore fair comparison,
we have not used the cross-correlation alignment from the previous step as the initial guess,
and we have applied VMF method directly on the initially displaced projections, as it is used in
[9,22,53]. The alignment quality in Table 1 shows that our implementation of the VMF method
can reach deep subpixel accuracy, resulting in a displacement accuracy better than 0.2 pixel
RMS for all the test datasets. The computational time is comparable with the XCA method, the
2D FFT-based unwrapping [40] of all 1260 projections required 20 s and the cross-correlation
alignment of the vertical mass distributions needed only 0.7 s.
The last tested method was our implementation of the MR-PMA method. Similarly, to the

previous test, we have not used the advantage of an initial guess provided neither by the XCA
nor by the VMF methods. Instead, we perform the reconstruction on multiple resolution levels.
Once the MR-PMA method converges according to the criterion in Eq. (13) on the coarser
resolution level, the result serves as the initial guess for the progressively finer resolution levels.
Our MR-PMA method reached sub-0.2 pixel RMS accuracy for all tested configurations in the
final resolution level as shown in Table 1. However, the remarkable feature of the deep-subpixel
alignment is the option to finish the alignment already in one of the coarser resolution levels
without need to iteratively compute the tomogram and projections at full resolution. This is
demonstrated in Fig. 4(a), where we show the evolution of the RMS displacement error in
different undersampling levels. The results are very consistent between the tested datasets and
only a weak dependence on the angular sampling and the noise in the data can be observed. Note
that the errors in Fig. 4(a) refer to the corresponding residual errors at full resolution. Alignment
at the 32× downsampled resolution level was already sufficient to reach the RMS projection
displacement error below 0.2 of full resolution pixels, i.e. 0.00625 downsampled pixels, for all
the tested synthetic datasets as shown in Fig. 4(a). The level of detail in the sample obtained by
the FBP method for different downsampling ratios can be seen in Fig. 5.

The per-iteration computational time of our PMA implementation is summarized in Fig. 4(b).
In the case of highly downsampled resolution, the computational cost is limited by a constant
overhead. For downsampling factor below 8, the per-iteration computational cost grows roughly
8× with each resolution level. On the other hand, the accurate initial guess from previous steps
allows reaching the convergence threshold provided by Eq. (13) in a single iteration as show in
Fig. 4(b).
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Fig. 5. FBP reconstruction quality after alignment by our MR-PMA method. Columns
show reconstruction at different downsampling levels from 32 up to 1, and rows correspond
to different synthetic datasets. Insets in the last column show detail of the reconstruction
quality for the full resolution dataset.

10. Results for simulated laminography datasets

Our implementation of the MR-PMA method can be applied for different imaging geometries,
e.g. laminography. Laminography is a generalization of conventional tomography with the only
difference that the sample rotation axis is not perpendicular to the illumination beam direction.
This geometry can be used to image planar 3D objects that would be difficult or impossible to
image by conventional tomography in a nondestructive way [54]. However, the laminography
geometry brings additional challenges to the projection alignment. Most importantly, the vertical
and horizontal alignment cannot be solved separately. Additionally, the tilted axis of rotation
implies that a meaningful reconstruction can only be obtained by calculating the full volume or a
significant part of it, which leads to a significant increase in computational demands. Furthermore,
there are no conserved quantities, such as VMF or center of mass that can be leveraged for
alignment.

We have used the phantom from the previous section to generate 1260 projections in parallel
beam laminography geometry with a 60 degrees angle between the rotation axis and beam

Fig. 6. (a) RMS error of the positions recovered using the MR-PMA method for different
downsampling levels in laminography geometry. (b) Number of iterations and time per
iteration.
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propagation direction. These projections were used to create three datasets in the same way as the
tomography datasets. The displacement error after alignment by our PMA method for different
downsampling levels is shown in Fig. 6(a). Laminography alignment is also a more complex
task due to the missing cone information and typically unlimited support of the imaged sample,
which may result into inconsistencies between the measured projections and their reprojections.
Despite these limitations, the alignment threshold of 0.2 pixel RMS was reached already for 8×
downsampled resolution for all three test datasets.

11. Alignment of experimental datasets

In order to demonstrate the full potential of the developed methods, we present here the alignment
of a ptychographic X-ray laminography (PyXL) dataset. Details of the measurement, acquired
at the cSAXS beamline, Paul Scherrer Institut (PSI), Switzerland, can be found in [55]. The
measurements were acquired in the laminography nano-imaging instrument (LamNI) [56]
equipped with optimized illumination optics [57]. The sample was an integrated circuit (IC)
printed using 16 nm node technology. The substrate was mechanically polished to a thickness
of about 20 µm, however all the scattering features are confined within a 4 µm thickness. We
have collected 2704 ptychographic projections with a circular field of view of 40 µm diameter
in the plane of the sample. The dimensions of the reconstructed ptychographic projections
were 2549×4155 pixels with a pixel size of 13.0 nm. The corresponding reconstruction volume
contains 3800×3800×600 elements.
This dataset presents several challenges, in particular the size of the reconstructed volume.

As discussed beforehand, laminography alignment does not allow the vertical and horizontal
alignment to be solved separately and, depending on the sample thickness, the entire imaged
volume or at least a significant part of it needs to be calculated in each iteration. Since the
data volume of the reconstructed ptychographic complex-valued projections is 230GB in single-
precision (32-bit), the alignment task becomes extremely demanding, both in terms ofmemory and
computation. Another complication for this IC sample is that it contains quasi-periodic features,
which makes alignment methods more prone to convergence into local minima. The combination
of these challenges makes this dataset ideal for demonstration of the unique capabilities of our
alignment framework.

As in the previous sections, the alignment was solved in several resolution levels. The coarsest
resolution level was 64× downsampled and the finest was 2× downsampled. Due to memory
limitations, we were not able to perform the alignment step at the finest resolution, therefore the
ability to reach alignment with subpixel accuracy was critical for this dataset. Since the ground
truth alignment is unknown, in Fig. 7(a) we report the alignment progress in each resolution level
using the displacement RMS value.
The displacements per iteration reported in Fig. 7(a) indicate that the 4× downsampled

resolution level already provides sufficient alignment precision, because the update RMS
magnitude in the following step is below 0.1 pixel. The required computational time in the 2×
downsampled dataset was 450 s per iteration as shown in Fig. 7(b). The total displacement for
each projection angle is shown in Fig. 7(c). The projection displacements are caused among
others by tracking the selected field of view in our sample by coarse motors upon rotation,
imperfections of the rotation stage, and long-term thermal drifts. The maximal displacement
error was up to 4 µm, i.e. 10% of the targeted field of view.
The laminography reconstruction after alignment is shown in Fig. 8. The reconstruction was

performed by a filtered back-projection method modified for laminography geometry [58]. The
corresponding spatial resolution of 18.5 nm was estimated from the intersection of the Fourier
shell correlation (FSC) with the 1/2-bit threshold [59] shown Fig. 8(c). The FSC calculation
excluded the Fourier-domain missing cone. This spatial resolution is sufficient to recognize the
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Fig. 7. (a) RMS of displacement update between subsequent downsampling levels for
the experimental nano-laminography dataset. Convergence criterion of 0.2 pixel RMS was
reached at 8× downsampled resolution. (b) Number of iterations and time per iteration
required by the MR-PMA method. (c) Total displacement of each projection versus rotation
angle.

sample’s fine internal structure. High spatial resolution close to the voxel size and artifact-free
reconstructions shown in Figs. 8(a) and 8(b) confirm a good alignment accuracy.

Fig. 8. Laminography slices of the two finest transistor metal layers M0 and M1 are shown
in (a) and (b), respectively. The red squares inside of the full circular fields of view denote
the regions magnified in the detailed views. (c) Fourier shell correlation of the laminography
reconstruction.

12. Conclusion

We have demonstrated here that use of alignment methods for 3D nano-imaging implemented with
deep subpixel accuracy can be achieved by a computationally efficient approach for tomography
and laminography datasets. The subpixel accuracy of our multi-resolution projection matching
method (MR-PMA) makes it possible to avoid sample reconstruction and reprojection at the full
spatial resolution during alignment and thus helps to significantly reduce the computational and
memory requirements.
Additionally, as we have demonstrated, our alignment methods perform well for noisy and

undersampled datasets. The difficulties related to undersampling are alleviated since sufficient
downsampling of the projections makes it always possible to satisfy the Crowther angular
sampling criterion. Therefore, we have not observed any improvement of the reconstruction
performance when iterative reconstruction methods such as SART were used for reconstruction
instead of the conventional FBP method.

The combination of all three presented alignment methods allows us to perform the tomography
processing in most cases in an unsupervised automatic manner. This helps to avoid the need of
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user interaction during the alignment process which is a significant bottleneck in nanotomography
and nanolaminography imaging.
Our GPU-accelerated MATLAB-based alignment and reconstruction framework is publicly

available in 10.5281/zenodo.3360818 [52] including a simple example of an artificial dataset.
A high-resolution ptychotomography measurement of nanoporous glass [53] is provided in
10.5281/zenodo.3539513 [60]. The aligned full-resolution complex-valued projections from
our experimental laminography dataset and the corresponding reconstruction are provided in
10.5281/zenodo.2657340 [61].
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