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Diameter-independent skyrmion Hall angle
observed in chiral magnetic multilayers
Katharina Zeissler 1,2*, Simone Finizio 3, Craig Barton 2, Alexandra J. Huxtable 1, Jamie Massey1,

Jörg Raabe 3, Alexandr V. Sadovnikov 4, Sergey A. Nikitov4,5,6, Richard Brearton7,8, Thorsten Hesjedal 7,

Gerrit van der Laan 8, Mark C. Rosamond9, Edmund H. Linfield 9, Gavin Burnell 1 &

Christopher H. Marrows 1

Magnetic skyrmions are topologically non-trivial nanoscale objects. Their topology, which

originates in their chiral domain wall winding, governs their unique response to a motion-

inducing force. When subjected to an electrical current, the chiral winding of the spin texture

leads to a deflection of the skyrmion trajectory, characterised by an angle with respect to the

applied force direction. This skyrmion Hall angle is predicted to be skyrmion diameter-

dependent. In contrast, our experimental study finds that the skyrmion Hall angle is diameter-

independent for skyrmions with diameters ranging from 35 to 825 nm. At an average velocity

of 6 ± 1 ms−1, the average skyrmion Hall angle was measured to be 9° ± 2°. In fact, the

skyrmion dynamics is dominated by the local energy landscape such as materials defects and

the local magnetic configuration.
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In magnetic multilayer films the interface between an ultrathin
magnetic material layer and a heavy metal layer gives rise to
the Dzyaloshinskii-Moriya interaction (DMI) which favours

chiral spin configurations. A consequence of the resulting com-
petition between this interface contribution and the Heisenberg
exchange interaction, which favours parallel spin configuration, is
the stabilisation of particle-like magnetic domains called sky-
rmions. Skyrmions are topologically non-trivial magnetic textures
with quasi particle-like properties1–9 and the potential for low
current density driven motion10–13. The combination of low
current density motion with a predicted resilience to defects and
edge roughness makes them potential candidates for future
spintronic devices14.

The non-trivial topology of the skyrmion has consequences for
their response to a driving force. A skyrmion feels a Magnus
force-like interaction when driven along a wire via a current-
induced spin torque15. Under the influence of a driving force, a
skyrmion will drift towards the wire edge, where the angle
between the longitudinal and transverse motion is defined as the
skyrmion Hall angle θSky

15. In the work presented here, the
skyrmion motion was induced through a driving force derived
from electrical current pulses.

Assuming the rigid skyrmion approximation16, and combining
the Thiele equation17 with the Landau-Lifshitz-Gilbert equation
in a flat energy landscape, one finds that the skyrmion velocity
components are given by

vy ¼
�αGDB

Q2 þ α2GD
2 jHMeandevx ¼ QB

Q2 þ α2GD
2 jHM ð1Þ

if a current is driven along the long axis of the wire (defined in
this work as the y-axis). Here, Q ¼ ±1 is the topological charge of
a skyrmion. D describes the dissipative forces acting on the
skyrmion and B is linked to the spin Hall effect which converts
the charge current in the heavy metal, jHM, to the spin current
that exerts spin-torques on the skyrmion, αG is the Gilbert
damping. The skyrmions experience a velocity component, vx,
towards the edge of the wire9,18,19. The skyrmion Hall angle is
then given by tan θSky ¼ �Q=αGD. For skyrmions with a dia-
meter, d, larger than the domain wall width, Δ, at their edge,
tan θSky can be approximated by20

tan θSky �
± 8Δ
αGπ

2d
: ð2Þ

Assuming the domain wall width Δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
A=Keff

p ¼ 4:6 nm,
based on typical values for the exchange stiffness, the effective
perpendicular anisotropy constants, the Gilbert damping constant
and the skyrmion diameter for multilayer systems, such as A=
10 pJm−1, Keff ¼ 0:47MJm−3, αG= 0.07 and d= 300 nm,
respectively, one expects a velocity independent θSky of 10°. This
expression depends only on the skyrmion geometry and the
damping constant, and so does not predict any dependence of
θSky on the driving force. However, the above assumes a perfectly
clean system. When defects are introduced deviations from the
ideal case are predicted21–24. Experimentally, a current density,
i.e., driving force dependence of the skyrmion Hall angle, was
reported in multilayer systems20,25,26. In particular, a linear
dependence of the skyrmion Hall angle on velocity was
observed20,25,26.

It has become more and more apparent that sputtered multi-
layer systems are prone to imperfections. While it is clear that
nanoscale variations in the magnetic parameters of devices lead to
skyrmion deformation and a wide range of stable diameters27,28,
the influence of defects on motion29 and the skyrmion Hall angle
remains an active field of debate20,23,26,27,30. On the one hand,
skyrmion Hall angle deviations are attributed to dynamic

deformation of the skyrmion during the motion25 and on the
other hand deviations are attributed to magnetic grains within the
material26,27,30 and defects20–24. Micromagnetic simulations have
shown that the skyrmion velocity is dependent on the ratio
between the magnetic grain size and the skyrmion diameter30.
From this it is reasonable to suppose that there is an additional
size dependence of the skyrmion Hall angle beyond the diameter
dependence imposed by the topology. An experimental observa-
tion of the diameter dependence of the skyrmion Hall angle in the
low velocity regime where pinning has a large influence on the
skyrmion Hall angle is therefore of great importance.

Here, we investigate skyrmion motion through a 2 µm
wide wire with diameters d ranging from 35 to 825 nm. The
skyrmions are stable at zero field and move up to 2 µm after the
injection of 20 current pulses. As expected, the skyrmion Hall
angle is non-zero. However, contrary to the standard theory
embodied by Eq. 2, the skyrmion Hall angle was found to be
diameter-independent. In our measurements, skyrmion-
skyrmion repulsion and defects in the wire are dominating over
the topology-driven skyrmion Hall effect.

Results
Imaging current-driven skyrmion motion. Scanning transmis-
sion X-ray microscopy was used to observe the motion of sky-
rmions in 2-μm-wide wires fabricated from a Ta(3.2)/Pt(2.7)/[Pt
(0.6)/CoB (0.8)/Ir (0.4)]×5Pt (2.2) multilayer (thicknesses in nm)
grown on an X-ray transparent Si3N4 membrane. Nucleation was
achieved using current pulses with a current density of
~5 × 1012 Am−2. This nucleation approach is a commonly used
technique to nucleate skyrmions31,32. Superconducting quantum
interference device-vibrating sample magnetometry (SQUID-
VSM) (field applied in-plane) and polar magneto-optical-Kerr-
effect (MOKE) magnetometry (field applied out-of-plane) show
an easy axis out-of-plane (see Fig. 1a) with an effective anisotropy
constant of Keff= 0.47 ± 0.04 MJm−3. The magnetometry mea-
surements were taken on a thin film sample sputtered onto Si in
the same growth as the nanofabricated samples. Brillouin light
scattering results from the thin film are shown in Fig. 1b. The
observed frequency shift in the inelastically scattered light from
the spin waves results in a calculated Dzyaloshinskii–Moriya
Interaction (DMI) strength of D=−1.1 ± 0.1 mJm−2.

After the initial nucleation of skyrmions in the wire, 9-ns-long
current pulses were injected with a maximum current density of
J= 1.2 × 1012 Am−2. Traces of the positive and negative current
pulses are shown in Fig. 1c. The ferromagnetic layers, sputtered
from an amorphous Co68B32 alloy target, support and sustain the
motion of skyrmions at zero field (see Fig. 1d–o). Figure 1d–i
shows single helicity scanning transmission X-ray microscopy
(STXM) images after two consecutive current pulses. Figure 1j–o
shows the skyrmion motion after the reversal of the current pulse
direction (a new initial state was nucleated). The colour-coded
arrows depict the direction of the positive (red) and negative
(blue) current pulse. In both sequences one skyrmion is framed
by a circle and its motion is tracked over 10 pulses. The
skyrmions were found to move with the current direction, i.e.,
against the electron flow direction. An average skyrmion velocity
of 8 ± 3 ms−1 was observed in this image sequence. All these
results shown in Fig. 1 were obtained under zero applied field.

Figure 2 shows the field-dependence of the skyrmion motion
through another 2-μm-wide wire. The skyrmion area, a, was
determined by counting the pixels within each skyrmion and an
effective diameter was calculated using a perfectly cylindrical
skyrmion model, i.e., the diameter is given by d ¼ 2

ffiffiffiffiffiffiffiffi
a=π

p
.

Figure 2 a shows that the size distribution of displaced skyrmions
tends to lower diameters as the negatively applied field is
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increased. This is expected as the field polarity was chosen to
apply a radial shrinking force on the skyrmions28.

However, for applied fields greater than −3 mT, a shift towards
larger average diameters is observed (see Fig. 2b). This is
attributed to the observation that small skyrmions disappear after
the first current pulse train. This is most likely to be a
consequence of a combination of the static field, the Oersted
field and the heating generated during the current pulse. A
positive current pulse was applied from the top of the wire (along
the y direction as defined by the imposed coordinate system). The
inset in Fig. 2b shows a measurement of the applied current pulse.
The maximum current density of the 9 ns pulse used to move the
skyrmions was 5.6 × 1011 Am−2. A static single helicity STXM
image was taken after two consecutive current pulses separated by
a delay of 2 μs. The centre of the displaced skyrmions was
identified and tracked using the ImageJ TrackMate algorithm33.
The skyrmion displacement and velocity was calculated from the
change in the skyrmion centre coordinates identified by the
algorithm before and after each current pulse pair. Figure 2c–l
shows the centre of the moving skyrmions superimposed onto the
initial state single helicity STXM image with respect to an out-of-
plane field. Their motion was observed in 0, −0.5, −1, −1.5,
−2.0, −2.5, −3.0, −3.5 and −4.0 mT fields (see supplementary
information for videos of the images taken at all fields). As the
field increases in strength, the length travelled by the skyrmion

decreases. This was seen to be due to an increase of the number of
annihilation events. 16 skyrmions versus 21 skyrmions were
nucleated in the case of exposure to a 0 and −4 mT field,
respectively. After the first four current pulses the 0 mT data
shows that all 16 skyrmions are intact, whereas, at −4 mT only
12 skyrmions remained.

Skyrmion Hall angle. Figure 3a shows the skyrmion Hall angle,
θSky, evaluated from the displacement of the skyrmion centre
position versus the diameter of the skyrmion prior to the dis-
placement. The skyrmion centre coordinates of all images were
identified using the TrackMate ImageJ algorithm. The raw dia-
meters and corresponding skyrmion Hall angles were binned into
25 nm and 5° intervals, respectively. Figure 3b shows the average
θSky value within each diameter bin. The lines superimposed on
Fig. 3b show the best fit employing a linear model (blue dash-dot-
dotted line) and the expected behaviour using the rigid skyrmion
model (grey dashed line, red line, and grey dotted line) with αG
taken to be 0.5, 0.07 and 0.02, respectively. The upper and
lower limits were chosen as these are values typically used
for similar multilayers in which skyrmion motion has been
demonstrated20,25. A Gilbert damping constant of 0.07 was
obtained by fitting the data using Eq. 2 and restricting the range
of the fitted data to diameters of 175 nm and larger. Skyrmions
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with a diameter of 150 nm and smaller are observed in the initial,
post nucleation state and hence are in regions with high defect
density. An exchange constant of A= 10 pJm−1 was assumed,
and an effective anisotropy constant, evaluated from data in
Fig. 1a, of Keff ¼ 0:47MJm−3 was used. However, contrary to
the expectation from Eq. 2, no diameter-dependence was
observed in the data. A constant average skyrmion Hall angle of
9° ± 2° was found, as observed by the linear fit (blue dashed line).
The skyrmion Hall angles below diameters of 150 nm do not
follow the predicted trend of growing rapidly as the skyrmion
diameter decreases.

Figure 3c shows the average velocity of the skyrmion within the
same bins. The histogram in Fig. 3d shows the number of
skyrmions within each bin. Figure 3e–m show the data displayed
in Fig. 3a for different applied out-of-plane fields. The average
velocity was found to be constant over the entire range of
measured diameters.

Skyrmion motion is known to be affected by the grain-to-grain
variation in the magnetic properties of polycrystalline metallic
films28. Modelling predicts that the skyrmion Hall angle
approaches the pristine film value as the velocity increases27,30.
A suppression of both the skyrmion Hall angle and velocity is
expected when the skyrmions sizes is comparable to the magnetic
grain size30. In that micromagnetic model, both the angle and the
velocity depend on the ratio of the grain size to the skyrmion
diameter. Therefore, our results are not consistent with the
established dynamical picture, as pinning from small grains
would reduce both velocity and θSky in a correlated way.

Figure 4 shows the correlation of θSky with the skyrmion
velocity. The raw velocity and corresponding θSky data were
binned into 1 ms−1 and 5° intervals, respectively (see Fig. 4a).
The average θSky and the number of skyrmions for each bin is
shown in Fig. 4b, c, respectively. Figure 4d–l show the individual
data sets acquired for different applied field strengths. The overall
average velocity is 6 ± 1 ms−1. The majority of the observed
skyrmions were observed to move at similar velocities close to
this average value (see the histogram in Fig. 3c). Variations in the
velocity were mostly observed at diameters below 50 nm and
above 750 nm. However, it is worth noting that only ~9% out of
all the moving skyrmions move with velocities outside the 5 to 7
ms−1 range (i.e., 59 out of a total of 680 skyrmions). A large
spread in the skyrmion Hall angle is observed at velocities below
3ms−1, with angles ranging from −80° to +80° (see Fig. 4a). This
spread is much less at higher velocities. Nevertheless, the average
value of θSky is unaffected by the velocity. A non-zero skyrmion
Hall angle is a theoretically predicted behaviour for skyrmion
motion in a disordered system in the flow regime . In this regime,
both moving and pinned skyrmions coexist, and large fluctua-
tions of the velocity transverse to the driving force are expected
resulting in a large scatter in the observed skyrmion Hall angle23.
Increasing the velocity reduces the scatter of the motion and
hence the scatter of the skyrmion Hall angle (as consistent with
data in Fig. 4a).

Oersted field effects. The flow of a current through a wire gen-
erates an Oersted field. This leads to an additional out-of-plane
field which varies in magnitude and sign across the x direction of
the wire. Following the Biot-Savart law, and integrating over the
dimensions of the nanowire, the magnetic field in the wire can be
computed by,

Hz x0; z0ð Þ ¼ I
8πwt

Z w=2

�w=2

Z t=2

�t=2

z0 � z

x � x0ð Þ2þ z � z0ð Þ2
 !

dx dz; ð3Þ

where w is the wire width, and t is the wire thickness of the
device. Figure 5a shows the spatial variation across the wire of the

z component of the Oersted field evaluated at a height of 1 nm
above the centre of the wire. At the edges of the wire a maximum
field of ±13 mT is reached. The measured coercive field at room
temperature of the unpatterned material system is 23 mT (see
Fig. 1a). During the current pulse the wire heats up and the
coercive field is expected to decrease, hence it is conceivable that
the Oersted field affects the magnetic domains.

Figure 5b shows the average diameter of the skyrmions
throughout 50 nm vertical slices taken along the wire (see inset in
Fig. 5a) at each applied field. Experimentally, the effect of this
Oersted field can be seen in the slight decrease of the diameter as
the skyrmions move across the wire. The skyrmion Hall angle
leads to a transverse component to the motion, and hence a
moving skyrmion will traverse through a change in the z
component of the field, i.e., skyrmions on the right-hand side
experience a more negative applied field. Fitting straight lines to
the data in Fig. 5b results in the confirmation of a negative slope
(see Fig. 5c) when a static field in the range of −0.5 to −3 mT is
applied. At zero field, the magnetic structures in the wire remains
unaffected. At fields more negative than −3 mT, the spatial
distribution of the skyrmion diameter indicates skyrmion growth
with increasing field. This anomaly is consistent with the anomaly
in the average diameter data, and most likely also an artefact of
the skyrmion annihilation events. Skyrmion annihilation occurs
frequently, however, annihilation events are not counted as finite
diameters and thus result in an artificial skewing of the data
towards larger diameters (see Fig. 2b).

While the field gradient is observed to influencing the spatial
distribution of the skyrmion diameter, which would result in a
spatially varying skyrmion Hall angle as the skyrmion traverses
the wire, it does not explain the observed diameter-independence.
Recent experiments on B20 skyrmion crystals have shown that
Bloch skyrmions can be controlled by non-uniform magnetic
fields34. In the case of Neél skyrmions, field-gradient manipula-
tion is theoretically predicted and should be diameter-
dependent35.

To quantify the effect of a magnetic field gradient on the
skyrmion Hall angle, an additional force in the Thiele equation,
FB, was included. This force is perpendicular to the force Fstt due
to spin-transfer torque in the wire, leading to a corrected value of
the skyrmion Hall angle:

θH ¼ tan�1 1þ αGD

Q
FB
Fstt

� �
=

FB
Fstt

� αGD

Q

� �� �
; ð4Þ

which now depends on the ratio FB/Fstt. In the limit
FB << Fstt, Eq. 4, tan θSky ¼ �Q=αGD, is recovered. As the Thiele
equation is first-order in time, the ratio FB/Fstt is vB=vstt. In order
to estimate an upper bound for this parameter, the speed at which
a field gradient of magnitude 5 mT µm−1 drives skyrmions was
investigated by micromagnetic modelling using the Fidimag
package36. The time that a skyrmion took to travel 500 nm in a
field gradient of this magnitude was measured using a discretisa-
tion of 2.5 nm × 2.5 nm × 2.5 nm. All material parameters were
set to the values previously derived in this paper except for the
uniaxial anisotropy, which was reduced to 0.1 MJm−3 to ensure
the stability of Neél skyrmions in the magnetic field regions of
interest in the absence of the demagnetising field. Out-of-plane
net magnetic fields in the range of 3–5 mT were used to derive a
mean value of FB=Fstt ¼ 0:0028 ± 0:0001. The small value of this
parameter indicates that the force due to a magnetic field gradient
is negligible in this case, and that the Hall angle should be well
approximated by Eq. 2.

Skyrmion energy landscape. The data shown in Fig. 2c–l sug-
gests that the skyrmions tend to follow distinct pathways through
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the wire irrespective of their size. For instance, the skyrmion
tracked by the navy hexagons and the skyrmion tracked by the
purple triangles follow the same path in Fig. 2f. Furthermore,
distinct track changes were observed, for example in Fig. 2e,
where the skyrmion tracked by the navy hexagons and that
tracked by the brown downwards triangles, change their

trajectory. An intensity map made by averaging all STXM images
shows a very uneven distribution of skyrmion positions
throughout the wire (see Fig. 6a). The intensity of each image was
normalised to the same non-magnetic region and the images then
were averaged together. Bright areas represent areas with a high
probability of being occupied by a skyrmion, either pinned or
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movable. Figure 6b is an average intensity map of the differences
between two consecutive images. Bright areas indicate regions
where a magnetic change has occurred due to the current pulse,
either skyrmion growth or motion. Figure 6c–j show the sky-
rmion centre positions throughout the excitation sequence at
each applied field superimposed onto the average intensity images
obtained at each applied field. A change in the skyrmion centre
represents a motion event and thus by combining the average
intensity map with the skyrmion centre motion one can distin-
guish growth from motion events.

Not all nucleated skyrmions were observed to move. Out of 197
nucleated skyrmions only 85 (44%) were seen to move in
response to current pulses. Figure 7a shows skyrmion nucleation
spots as open dark blue circles. The overlaid solid light blue
circles highlight those skyrmions which then moved.

Figure 7b–d shows examples of phenomena that were observed
to affect the skyrmion trajectories. We identify two primary
reasons for changes in the skyrmion trajectory: Deflection from
pinning sites and deflection from neighbouring magnetic
domains or skyrmions. Skyrmions (1), (3) and (4) in Fig. 7b–d
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change trajectory abruptly due to pinning sites. It is interesting to
note that the majority of the 18 skyrmions with a diameter smaller
than 150 nm were observed in the initial, nucleation image and
hence by default are likely to be in regions with defects. Skyrmions
(2) and (5) change trajectory smoothly due to deflection from other
magnetic domains and skyrmions. In areas of low pinning, i.e.,
regions with a low skyrmion nucleation probability37, skyrmions
are seen to move with an angle around 10°. This angle is consistent
with predictions using the modified Thiele equation, for skyrmions
with diameters above 250 nm (as predicted by Eq. 1). Hence,
this is a consequence of the skyrmion’s non-trivial topology.
This experimentally confirms that the local energy landscape of
multilayer skyrmion systems not only changes the drive dependence
of the skyrmion Hall angle20–26 but also quenches its predicted
diameter dependence.

We have shown that Pt/CoB/Ir multilayers support skyrmions
at zero field and that they can be moved by an electrical current.
A 9-ns-long current pulse with a peak current density of 5.6 ×
1011 Am−2 was shown to displace skyrmions with an average
velocity of 6 ± 1 ms−1. While the multilayers studied here were
not optimised for current to spin-current conversion and spin
orbit torque efficiency, the observed skyrmion motion reversal
under current direction inversion indicates that spin-orbit
torques are operative. A diameter-independent skyrmion Hall
angle of 9° ± 2° was observed. While the skyrmion Hall angle is
consistent with the predictions of the rigid skyrmion Thiele
picture for skyrmions with diameters above 175 nm, the overall
diameter independence is quite surprising. The large, non-zero,
velocity-dependent scatter of the Hall angle is consistent with the
flow regime in which moving and pinned skyrmions coexist. The
skyrmion trajectories are influenced by pinning sites and by
skyrmion–skyrmion interactions. In areas of low pinning and
skyrmion density the expected skyrmion Hall angle is recovered.
Tailoring of the local magnetic parameters, introducing low
pinning pathways, can therefore be envisioned to transport
skyrmions down parallel lanes within the nanowire device in a
robust manner, providing a barrier to the innate transverse
motion skyrmions exhibit when driven by spin torques. By
tracking the motion of skyrmions and correlating it to nucleation
sites local changes in the magnetic energy landscape are
inferred–allowing for its engineering in future device applications.

Methods
Multilayer growth and wire fabrication. The thin films were deposited using DC
magnetron sputtering at a base pressure of 2 × 10−8 mbar and a target-substrate
separation of ~7 cm. During the growth the argon pressure was 3.2 mbar. Typical
growth rates of around 0.1 nms−1 were used. The superlattice stack, [Co68B32 (0.8)/
Ir (0.4)/Pt (0.6)]×5, (thicknesses are in nm), was grown on a seed layer of 3.2 nm
Ta/2.7 nm Pt and capped with 2.2 nm of Ta. The patterned structures were grown
on 200-nm-thick, highly resistive silicon nitride membranes (Silson Ltd, War-
wickshire, UK). An identical thin film was simultaneously sputtered onto a ther-
mally oxidised Si substrate (with an oxide layer thickness of 100 nm) to allow for
the characterisation of the materials properties using standard techniques.
X-ray reflectivity was used to measure the layer thicknesses, and room temperature
polar magneto-optical Kerr effect (MOKE) magnetometry and in-plane super-
conducting quantum interference device-vibrating sample magnetometry (SQUID-
VSM) were used to confirm the out-of-plane easy axis of the superlattice and to
extract the saturation magnetisation of the Co68B32 ferromagnetic layer (MS= 1.2
± 0.1 M Am−1).

The 2-µm-wide wires were fabricated using electron-beam lithography with a
positive resist lift-off process. The resist layer consisted of a bilayer of electron-
beam-sensitive, positive, resist: the bottom layer was methyl-methacrylate (MMA)
and the top layer was polymethylmethacrylate (PMMA). The spun and baked resist
bilayer was exposed using a 100 kV Vistec EBPG 5000Plus electron beam writer
with a writing dose of 1650 µC cm−2. Following the exposure, the devices were
developed for 90 s in a 1:3 methyl-isobutyl-ketone and isopropyl alcohol solution
(by volume) and rinsed for 60 s in isopropyl alcohol. After the heterostructure was
deposited, the unpatterned regions were lifted off in acetone. Finally, thermally
evaporated, 200-nm-thick Cu electrodes were fabricated again by lift off and were
designed to achieve an electrical impedance close to 50 Ohm minimising unwanted
reflections of the injected current pulses.

Brillouin light scattering. Brillouin light scattering was used to measure the
Dzyaloshinskii–Moriya Interaction (DMI) strength, D, of the continuous het-
erostructure sample. D is extracted by measuring the asymmetry in the Stokes
and anti-Stokes lines of light that has been inelastically scattered from propa-
gating spin waves. The DMI strength is directly proportional to the frequency
shifts of the inelastically scattered light with respect to the incident laser beam
frequency,

Δf ¼ fS � fAS ¼
2γ
πMS

Dk; ð5Þ

where k is the absolute value of the magnon wavevector, fS is the Stokes fre-
quency, fAS is the anti-Stokes frequency, and γ= 190 GHzT−1 is the gyromag-
netic ratio. Spin waves of a given wavelength, which are propagating in opposite
directions in a sample with strong DMI, have different energies. This behaviour
is known as propagation nonreciprocity and occurs in the Damon-Eshbach
geometry. The Stokes and anti-Stokes spectra measured for k= 7 × 10 µm−1 and
k= 11.09 µm−1 can be seen in Fig. 1b. D was calculated using Eq. 5 and was
found to be −1.1 ± 0.1 mJm−2.
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Fig. 7 Energy landscape dominated motion. a Skyrmion nucleation sites superimposed on the map shown in b (open blue circles) versus nucleation site of
moving skyrmion (full light blue circles). b–d Zoom in of the area surrounded by the white dotted square in a. The centre positions of selected skyrmions
imaged at −1 mT are superimposed as solid, spheres, triangles and hexagons, respectively. Changes to the centre trajectory as the skyrmions travel
through the wire are apparent. Trajectory changes were observed to occur due to pinning sites (1), (3) and (4) and skyrmion–skyrmion (5) or skyrmion-
magnetic domain deflection (2). When local effects do not dominate, the skyrmions follow a trajectory around 10° (dotted black line) which is consistent
with the angles predicted by the Thiele equation for skyrmions with a diameter larger than 250 nm.
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Soft X-ray imaging. The out-of-plane magnetisation of the devices was imaged
using scanning transmission X-ray microscopy (STXM) at the PolLux (X07DA)
beamline at the Swiss Light Source. The device was aligned perpendicular to
the incident X-rays, which were tuned to the Co L3 absorption edge (~778 eV).
Out-of-plane magnetic contrast was achieved using X-ray magnetic circular
dichroism, with the differential absroption being strong enough that STXM
images were acquired using only a single photon helicity. A Fresnel zone
plate with an outermost zone of 25 nm was used to focus the X-rays on the
sample. A spatial resolution on the order of 25–30 nm was achieved. The images
were taken with a pixel size of 35 nm. The images were acquired at room tem-
perature. The skyrmions were nucleated using a 9-ns-long current pulse at a
current density of ~5 × 1012 Am−2. The nucleated skyrmions were then moved
using current pulses with a duration of ~9 ns and a current density of 5.6 ×
1011 Am−2. An arbitrary waveform generator (AWG) was used to create the
applied sine wave pulse of ½ period. A broadband RF amplifier was employed to
amplify the signal generated by the AWG. The absence of a DC component in the
transfer function of the amplifier is responsible for the over/undershoot of the
injected current pulses that can be observed in Fig. 1c. The current injected across
the wires was measured with a 50Ω terminated real-time oscilloscope. A static
out-of-plane magnetic field was applied in the range between 0 and −4 mT.
A negative field opposes the skyrmion core direction and hence compresses the
skyrmion diameter d.

Data availability
The data associated with this paper are openly available from https://doi.org/10.5518/742.

Code availability
The codes associated with the simulations presented in this paper are openly available
from https://doi.org/10.5518/742.
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