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Abstract. Recent progress in nanofabrication and additive manufacturing have

facilitated the building of nanometer-scale three-dimensional structures, that promise

to lead to an emergence of new functionalities within a number of fields, compared to

state-of-the-art two dimensional systems. In magnetism, the move to three-dimensional

systems offers the possibility for novel magnetic properties not available in planar

systems, as well as enhanced performance, both of which are key for the development

of new technological applications. In this review paper we will focus our attention

on three-dimensional magnetic systems and how their magnetic configuration can be

retrieved using X-ray magnetic nanotomography. We will start with an introduction

to magnetic materials, and their relevance to our everyday life, along with the growing

impact that they will have in the incoming years in, for example, reducing energy

consumption. We will then briefly introduce common methods used to study magnetic

materials, such as electron holography, neutron and X-ray imaging. In particular,

we will focus on X-ray magnetic circular dichroism and how it can be used to image

magnetic moment configurations. As a next step we will introduce tomography for

three-dimensional imaging, and how it can be adapted to study magnetic materials.

Particular attention will be given to explaining the reconstruction algorithms that can

be used to retrieve the magnetic moment configuration from the experimental data, as

these represent one of the main challenges so far, as well as the different experimental

geometries that are available. Recent experimental results will be used as specific

examples to guide the reader through each step in order to make sure that the paper will

be accessible for those interested in the topic that do not have a specialized background

on magnetic imaging. Finally, we will describe the future prospects of such studies,

identifying the current challenges facing the field, and how these can be tackled. In

particular we will highlight the exciting possibilities offered by the next generation

of synchrotron sources which will deliver diffraction limited beams, as well as with

the extension of well-established methodologies currently implemented for the study

of two-dimensional magnetic materials to achieve higher dimensional investigations.
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1. Introduction

Magnetic materials have played a pivotal role in the industrialization of our society.

Initially with dynamos, and subsequently alternators, which all made use of permanent

magnets, new capabilities for transforming electrical power into kinetic energy, and vice-

versa, led to Electrification, hailed as “the greatest engineering achievement of the 20th

Century” [1]. The importance of such devices, whose performance has been improved

tremendously in the last decades, has not faded with time. On the contrary, today

permanent magnet-based devices form the basis of renewable energy production, forming

a main component of, for example, wind turbines, and represent a key component of

the automotive industry, where complex stacks of magnetic and non-magnetic layers are

also used as sensors [2].

Aside from energy production and harvesting, one of the most well-known

applications of magnetism in our day-to-day lives is magnetic recording media, which

until recently was the main way to store information in our personal computers.

Although personal storage on mobile devices has shifted towards solid-state drives

in recent years, magnetic recording media is still used extensively in international

data storage centres, such as those serving the Cloud. As the amount of information

to be stored or transmitted increases, so does the pressure to develop and provide

high capacity storage at low economic costs, whilst growing awareness of the high

energy consumption and carbon footprint of data storage centres [3] demands more

energy-efficient, sustainable storage options. Currently there is significant research

into developing new energy-saving materials for information technology [4], such as

multiferroics [5, 6, 7, 8], skyrmions [9], and magnetic [10] and antiferromagnetic [11, 12]

spintronic devices, all realised by the development of complex magnetic materials.

An alternative route to enhanced, or indeed new, physical properties and

functionality can also be obtained through an increase in the dimensionality of a system.

Indeed, in recent years the introduction of three-dimensionality has led to advances in

a number of fields, including significant increases in the energy density of solar cell

technologies with the macroscopic three-dimensional arrangement of solar cells [13, 14],

increased control over both photonic [15, 16, 17] and mechanical [18] properties in three-

dimensional metamaterials, and new medical applications such as drug delivery with

fabricated three-dimensional magnetic microbots [19, 20].

When it comes to magnetic materials, three-dimensionality is no less promising.

Two recent review papers [21, 22] highlighted the wide-ranging potential of curved
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and three-dimensional magnetic systems, from opportunities for ultra-high density data

storage [23], to new intrinsic geometry-induced magnetic properties [24, 25, 26] and

extraordinary magnetisation dynamics [27]. Now, with recent advances in modelling

and synthesis, the design and fabrication of three-dimensional magnetic nanosystems

has become possible [28, 29, 30, 31, 32, 33, 34], opening the door to a wide variety of

new physics, and future applications.

As well as new fabrication and simulation expertise, robust characterisation

techniques well-suited to these complex devices and geometries are essential to develop

a fundamental understanding of the behaviour of these systems. Recent advances in

magnetic tomography have opened the door to the detailed investigation of three-

dimensional magnetisation configurations [35, 36, 37, 38, 39, 40, 41, 42, 43], which is

key to the development of current and future magnetic devices. In this review we will

discuss the promise of three-dimensional magnetic systems, and recent developments for

their characterisation, with a particular focus on the promising area of X-ray magnetic

tomography.

This review is organized as follows: in Section 2 we provide an introduction

to three-dimensional magnetic systems. Section 3 gives a general introduction on

the characterization of three-dimensional magnetic nanostructures, with an emphasis

on X-ray techniques. Section 4 describes in more detail X-ray magnetic imaging

in two dimensions, illustrating the advantages and disadvantages of different X-ray

imaging techniques. In Section 5 we explore three-dimensional imaging of magnetic

materials with X-rays, describing in detail both the state-of-the-art, and the needs

and requirements for the experiments. Finally, in Section 6 we discuss the prospective

technical improvements for X-ray three-dimensional imaging and interesting scientific

cases that could be investigated by this technique.

2. Three-Dimensional Magnetism

The three-dimensional nature of magnetism is particularly important in a number of

areas, which can be identified by their dimensions when compared to the relevant

magnetic lengthscales [44, 45]. For example, by patterning curved and three-dimensional

thin film structures at the nanoscale, with lengthscales on the order of the magnetic

exchange length, control over the magnetic structure and properties can be obtained

via confinement of the magnetisation in three-dimensions. On the other hand, in

extended - thick, or bulk - systems, which are widely used in technological applications,

the internal magnetic structure is intrinsically three-dimensional: in the absence of

lateral confinement that is found in thin film structures, the magnetisation is free to

orientate itself in three dimensions, leading to higher degrees of freedom and complex

configurations such as three-dimensional spin textures and topological structures. In

this section we present an overview of the different types of three-dimensional magnetic

systems, some of which are discussed in more detail in the following review papers

[22, 21].
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Figure 1. A brief overview of three-dimensional magnetism, which we consider in

two main regimes: nano-patterned curved and three-dimensional magnetic geometries

(left) and three-dimensional magnetic textures within extended systems (right). a)

Different types of topologically protected domain walls occur in cylindrical magnetic

nanowires, which include both the Bloch point domain wall (left) and the transverse

domain wall (right) that are depicted schematically. b-c) Micromagnetic simulations

of vortex domain walls in hollow magnetic nanotubes (b) predict very high domain

wall velocities, leading to magnetochiral effects and reaching the magnonic regime (c)

where the spin Cherenkov effect occurs, and spin waves are emitted from the moving

domain wall. d) Three-dimensional topological structures such as the surroundings

of a circulating Bloch point (pictured) have been observed within extended magnetic

materials. Scale bar represents 100 nm. e) In addition, complex three-dimensional

structures formed of bulk magnetic charges have been predicted. Here, isosurfaces

are shown that correspond to magnetic charges within the structure, that can be

seen to twist in a helix along the axis of the whisker. Another three-dimensional

magnetic texture are hopfions (f), three-dimensional topological solitons that have

recently been predicted for magnetic materials. Hopfions are defined by their Hopf

charge, that quantifies the linking of pre-images corresponding to certain directions

of the magnetisation in three dimensions. Here, the blue isosurface corresponds to

m = [0, 0,−1] and the red isosurface to m = [0,−1/
√

2,−1/
√

2]. These curves are

seen to intertwine for non-trivial topological hopfions of Q = 3, 5 in the left and

right images, respectively. b) reproduced from Ref. [46], with the permission of AIP

Publishing. c) reproduced from Ref. [36]. d) reproduced from Ref. [47]. e) reproduced

with permission from Ref. [48]. Copyright (2017) by the American Physical Society.

2.1. Curved and Three-Dimensional Magnetic Geometries at the Nanoscale

In addition to offering improved physical properties such as high density data storage

with the racetrack memory [23], the introduction of three-dimensionality into a magnetic

system, whether it be the introduction of curvature into magnetic thin films [22] or

through the patterning of three-dimensional nanostructures [21], can have a significant

influence on the magnetic properties of a system.

The phenomenon of curved magnetic systems has been of increasing interest in

recent years [22, 27], both for their new magnetic properties and due to the prospect
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of various applications including data storage [23] and shapable magnetoelectronics

[49]. By introducing curvature into two dimensional thin films, novel effects such

as an effective Dzyalozinskii-Moriya-like interaction [24, 25, 50, 22, 51] resulting in

magnetochirality can be induced. As well as magnetochiral effects, curvature results

in an effective anisotropy [24] that acts as an effective magnetic field [25], leading to the

stabilisation of skyrmion structures [52]. Lattices of three-dimensional curved magnetic

shells have been used to achieve a three-dimensional artificial spin ice lattice [32].

The natural extension of curved surfaces to three-dimensional structures leads

to magnetic nanotubes: elongated closed curved magnetic surfaces that combine the

effects of curvature with the potential for domain wall conduit behaviour [23, 53]. A

number of analytical works have predicted magnetic phenomena such as spin wave non-

reciprocity and a Dzyalozinskii-Moriya-like dispersion relation for such systems [54, 55].

In addition, magnetic nanotubes are predicted to exhibit rich domain wall dynamics,

with magnetochiral “selection” in the propagation of vortex domain walls [56] and the

suppression of the Walker breakdown leading to high domain wall velocities [46], with

which new dynamic regimes can be reached. One of these regimes is the magnonic

regime, analogous to the supersonic regime for sound, in which the domain wall travels

faster than spin waves in the material, leading to the emission of spin waves in a spin-

Cherenkov effect [46, 57].

Along with curvature-based magnetic structures such as magnetic nanotubes,

magneto-chiral effects and impressive domain wall properties have also been predicted

for magnetic nanowire structures [58, 59]. In these systems, different types of domain

wall have been observed, including the Bloch point domain wall, that contains a

magnetisation singularity [60, 61] and the transverse-vortex domain wall in which the

magnetisation points perpendicular to the long axis of the wire [62, 60, 61], shown

schematically in Figure 1a). When moved using a current or magnetic field, domain

walls in cylindrical nanowires are predicted to also exhibit impressive dynamics, with

transverse domain walls exhibiting massless properties, thus leading to a complete

suppression of the Walker breakdown [58]. Contrary to such theoretical predictions,

recent experimental investigations have observed the topological transformation of

the domain wall structure above a field threshold, highlighting that although very

promising, further experimental and theoretical investigations are necessary to achieve

a full understanding of the dynamics of these systems [63].

2.2. Three-dimensional magnetic textures in extended systems

In the context of soft magnetic thin films, of thicknesses on the order of the exchange

length, where for the most part the spatial anisotropy confines the magnetisation in

the plane, a two dimensional model is often sufficient for a description of magnetic

behaviour, and a controllable, confined magnetic configuration is often available. As

magnetic thin films get thicker, the spatial anisotropy decreases with the result that

more complex, higher dimensional magnetic configurations occur. A simple example is
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that of the magnetic vortex, where the in-plane magnetisation curls around a central

core region in which the magnetisation tilts out of plane: in thin films, the core can be

approximated as homogeneous throughout the height of the film. However, in thicker

systems, where the thickness is much greater than the material-specific exchange length

(> 50 − 100 nm), where the films are no longer considered “thin”, the core exhibits a

more complex inhomogeneous structure through the thickness of the film, requiring a

full three-dimensional treatment [64].

Indeed, when one moves to larger systems, the complexity of extended systems

is reflected in the resulting complicated energy landscapes, which whilst leading to

challenges in the understanding and simulation of such systems, can also lead to new

nanoscale magnetic phenomena. Within the complex network of vortices and domain

walls observed in a micrometre-sized ferrimagnetic pillar [36], the surroundings of stable

singularities of the magnetisation, known as Bloch points, were observed for the first

time: the complex spin texture surrounding one of the observed Bloch points is shown in

Figure 1c. In another example, unexpected helical quadrupoles of magnetic charge (see

Figure 1e)) have recently been predicted to be a possible source of the long-observed, yet

poorly understood, domain patterns on the surface of the micrometre-sized Fe whiskers

[44, 47].

Three-dimensional structures become particularly exciting when one considers their

topology. An object with non-trivial topology cannot be smoothly deformed into

a trivial, uniform texture, instead requiring a substantial amount of energy to be

annihilated, and thus can be thought of as topologically protected. A well known example

is the skyrmion, a two dimensional planar magnetic object whose spin texture can be

mapped onto all directions of a sphere, and which thus has a topological skyrmion

number of 1 [65]. Topological protection is particularly motivating when it comes to

applications such as data storage and logic, where the stability of the textures encoding

the data is essential: indeed, significant research is currently being devoted to the

skyrmion racetrack [9], which proposes to exploit both the small size and topological

stability of these whirling magnetic structures, in addition to the low current-densities

needed to propagate them.

Recently there has been a growing interest in three-dimensional magnetic

topological structures, where the corresponding topological number is the Hopf charge

[66, 67], Q. Also known as magnetic knots, so-called hopfions are intrinsically three-

dimensional topological objects, where their Hopf charge Q quantifies the linking of pre-

images corresponding to certain directions of the magnetisation in three dimensions. In

particular, in the vicinity of a non-trivial hopfion of Hopf charge Q, pre-images mapping

particular directions of the magnetisation will link with each other Q times, as shown in

Figure 1f). In the image shown, the blue isosurface maps regions with the magnetisation

direction m = [0, 0,−1] and the red isosurface with m = [0,−1/
√

2,−1/
√

2]. These pre-

images link 3 and 5 times in the left and right images, respectively, corresponding to

hopfion charges of Q = 3, 5.

While at first it appeared challenging to realise hopfions experimentally, they
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have been discovered in a variety of materials, including cholesterics [68], liquid

crystals [69, 70, 71], anisotropic fluids [72], chiral ferrofluids [73] and Bose-Einstein

condensates [74]. Although they have not yet been observed in ferromagnets, there

have been multiple theoretical works proposing a number of routes for the realisation

of hopfions in a ferromagnet [48, 75, 76, 77, 78], and in order to visualise their three-

dimensional magnetic configuration, characterisation techniques such as X-ray magnetic

tomography will be necessary.

Besides fundamental investigations, extended magnetic systems are also important

from the point of view of applications. In particular, extended soft magnets are relevant

in inductive applications such as motors or sensors that depend on a high permeability

[44, 79, 35], while permanent magnets are used for energy harvesting, mechanical and

sensor applications [79]. In these materials, the magnetic microstructure is critical

to the functionality and thus the performance of the magnet, and it is not only the

domain configuration that is relevant, but also the micromagnetic details, which include

vortices and magnetic singularities, and the influence of physical defects such as the

grain structure of the material.

As well as improvements in the material properties, increases in device efficiency

such as motor output power can be achieved through the design of both the distribution

and shape of magnets in three dimensions [80]. Recent advances in the 3D-printing of

bonded polymer magnet composites offer the freedom to design permanent magnets in

three-dimensions, offering the possibility for optimised field distributions for enhanced

efficiency in current applications [81, 82, 83], along with added advantages such as

being low weight and low cost, with optimised mechanical properties and corrosion-

resistance. Whilst particularly promising for a number of applications, the magnetic

properties of bonded permanent magnets are compromised with respect to sintered

permanent magnets [84]. A possible solution comes with the recently-developed 3D-

printing of permanent magnetic materials such as NdFeB in millimetre-sized complex

shapes with micrometer precision [85]. In this way, significant improvements in the

magnetic properties with respect to their bonded counterparts are achieved, with the

ability to design bulk systems in three-dimensions, in addition to enhanced control over

grain size.

3. Characterisation of three-dimensional magnetic nanostructures

With the growing interest in three-dimensional magnetic systems [22, 21], appropriate

imaging techniques for the visualisation of the features of three-dimensional magnetic

systems are required. One of the main challenges facing the characterisation of three-

dimensional magnetic systems is the vectorial nature of the magnetisation. All three

components of the magnetisation vector field must be determined in three-dimensional

space, essentially resulting in a six-dimensional problem. We shall first take a moment to

clarify our language: in this review, when referring to three-dimensional magnetisation

configurations, the vectorial nature of the magnetisation vector field is assumed.
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Likewise, magnetic tomography refers to the imaging of the three-dimensional vector

field in three dimensions.

The three-dimensional magnetisation configuration within the bulk of a magnetic

material was investigated for the first time by Libovický in 1972, who studied the

internal magnetic configuration of a FeSi crystal indirectly [86]. For the specific case of

FeSi, heating the sample up to high temperatures results in the formation of platelets

that align with the magnetisation of the sample [86]. By etching the material in

5µm steps and imaging the platelet formation, Libovický was able to determine the

internal magnetic structure of the crystal with micrometre resolution. This technique

was extended by Shin et al. by combining it with a serial sectioning method involving the

etching of the surface in 0.5µm steps [87], leading to a much higher spatial resolution,

with which the microstructure of the domain walls could be determined. Unfortunately,

along with being destructive, this technique is specific to FeSi and requires heating the

sample to temperatures on the order of 600◦C, meaning that for other magnetic materials

such as soft or permanent magnets with lower Curie temperatures, an alternative method

to visualise the internal magnetic microstructure is required.

Although the first proposals of a non-destructive magnetic tomography technique

came in the 1990s [88, 89, 90], it is only in the past decade that magnetic tomography has

become a reality. First studies performed with spin polarised neutron tomography were

reported in 2008 [39], where the magnetic field within a millimetre-sized superconducting

sample was mapped in three dimensions with a spatial resolution of hundreds of

micrometres. The magnetisation configuration of a sample, however, was not mapped

until 2010, when, with Talbot-Lau neutron tomography with inverted geometry, Manke

et al. [38] achieved a three-dimensional mapping of the magnetic domain walls, thus

determining the size and location of the magnetic domains within the bulk of a FeSi

crystal with a spatial resolution of 35µm. Although this implementation of neutron

tomography provided the first non-destructive imaging of magnetic domains within a

sample, the spatial resolution is limited to lengthscales on the order of tens to hundreds of

micrometres. Also, neutron magnetic imaging techniques do not measure the orientation

of the magnetisation in a sample, but one rather locates the domain walls [38] or

measures the magnetic fields created by the sample magnetization [39]. For three-

dimensional nanomagnetic structures and textures that are the focus of this review, a

significantly higher spatial resolution is required.

The exact spatial resolution required is very material and system dependent.

However, one can make the following generalisation: for the study of larger domain

configurations, spatial resolutions on the order of hundreds of nanometres are generally

sufficient. To gain information on the details of features of the magnetisation

configuration, including topological structures such as vortices, skyrmions, and domain

walls, a spatial resolution approaching the exchange length of the material (spatial

resolution ≈ 5− 30 nm) is required.

Non-destructive three-dimensional magnetic imaging at the nanoscale has only

become a reality in recent years, and was first achieved with transmission electron
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microscopy [91, 37, 40, 41] and soft X-ray microscopy [35, 43]. Although suitable for

imaging the magnetic configuration of thin films and nanostructures, the low penetration

depth of these techniques means that they are limited to the investigation of samples

of total material thickness below approximately 200 nm. In addition, the requirement

for vacuum-compatible setups that often lack space, means that obtaining sufficient

angular sampling needed for the characterisation of three-dimensional vector fields can

be challenging.

A solution for the investigation of thicker extended systems was provided by the

use of higher energy X-rays, which offer a higher penetration depth combined with high

spatial resolution imaging, as evidenced by recent advances in non-magnetic imaging

that have provided nanometre spatial resolution imaging of structures with thickness of

the order of many micrometres [92, 93]. Indeed, the first demonstration of hard X-ray

magnetic tomography of extended micromagnetic systems allowed for the mapping of

the magnetisation vector field within a micrometre-sized GdCo2 pillar with a spatial

resolution of 100 nm [36]. Since then, hard X-ray magnetic imaging has also been used

to map the domains within systems with strong magnetocrystalline anisotropy [94].

For magnetic imaging, however, hard X-rays have certain disadvantages, the main

one being the limited magnetic contrast, originating from X-ray magnetic circular

dichroism (XMCD), that is available. Indeed, while relatively high XMCD signals are

available with soft X-rays, in the hard X-ray regime, however, one indirectly probes the

magnetisation, resulting in a significantly weaker magnetic signal [95] that limits the

spatial resolution, and poses severe constrains on both the material and the minimal

thickness of a sample that can be measured on a reasonable timescale. For more details

of XMCD, and a comparison of the XMCD signals available in different regimes, please

refer to Section 4.1 and Table 1, respectively.

When planning measurements for the characterization of three-dimensional vector

fields, it is essential to identify the optimal approach for a specific sample, in order to

obtain useful information. We note here that the use of complementary techniques are

often useful for a complete understanding of the sample properties and configurations.

In this review article, we will discuss in detail the state-of-the-art available for the study

of three-dimensional systems, with a particular focus on X-ray techniques, with a view

to providing a clear guide to the current status of three-dimensional magnetic imaging,

and how to best make use of it. Following this discussion, a guide to choosing the

optimal experimental parameters for a particular three-dimensional magnetic system is

provided in Figure 5.

4. X-ray magnetic imaging

In this section we shortly introduce the basis of X-ray magnetic imaging, namely X-ray

magnetic circular dichroism, and then go on to describe how it is used to image mag-

netic domains in magnetic nanostructures. For a more detailed treatment of the origin

of magnetic dichroism the reader is referred to Ref. [96] or Ref. [97].
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4.1. X-ray magnetic circular dichroism

The dependence of the absorption of light on its polarisation is known as dichroism.

Generally, the response of an electron charge distribution to an electromagnetic wave

is not isotropic, due, for example, to the molecular orientation or the directionality of

chemical bonds. Depending on the polarization of the incident electromagnetic wave and

the local symmetries displayed by the sample, the attenuation coefficient displays linear-

or circular dichroism. Dichroism has also been observed at X-ray wavelengths, though

the effect is usually significant only in the vicinity of absorption edge resonances, where

the internal fields present into the sample strongly affect the excited photo-electrons.

Such photo-electrons are also sensitive to the magnetisation distribution created by

unpaired electrons, leading to the occurrence of X-ray magnetic dichroism. For example,

in a magnetic material the absorption might depend on the relative orientation of the

X-ray polarization to the preferred magnetic axis. In this case the effect is called X-

ray magnetic linear dichroism (XMLD). In the case where the absorption depends on

relative orientation of the helicity of the X-ray beam and the magnetic easy axis, the

effect is named X-ray magnetic circular dichroism (XMCD).

For the study of ferromagnetic materials, the latter effect, XMCD, provides an

absorption signal that is proportional to the component of the magnetisation parallel

to the direction of propagation of the X-rays. The XMCD signal is dependent also on

the particular absorption edge to which the X-ray energy is tuned.

In the soft X-ray regime resonant X-rays probe electronic transitions between core

levels and the magnetically polarised valence band. In particular the L2,3 edges (2p-3d)

of transition metals and the M4,5 edges (3d -4f ) of rare earths directly probe the valence

bands 3d and 4f of the transition metal and rare earth materials, respectively. This

results in relatively high XMCD signals (up to 100%)

Whilst in the soft X-ray regime one directly probes the magnetic electrons in the

valence level for the L edges of transition metals (2p − 3d) and the M edges of rare

earths (3d − 4f), in the hard X-ray regime the detection of the magnetic moment is

not so straightforward, as it relies on the hybridization between the valence band and

the unoccupied orbitals just above it. There are two main types of absorption edge

for magnetic materials in this regime: the L edges of the rare earths (2p − 5d), and

the K edges of the transition metals (1s− 4p), both of which have significantly weaker

associated XMCD signals as those found in the soft X-ray regime (see Table 1), especially

for 3d transition metals. Therefore, imaging tools to study magnetic material with X-

rays have been developed mostly for the soft X-ray regime, and it is only recently that

hard X-ray imaging with nanoscale resolution was achieved [98]. We note here that it

has been recently demonstrated that a strong XMCD effect can also be measured in the

hard X-ray regime by performing resonant inelastic X-ray scattering (RIXS), although

at the price of a more complex experimental geometry [99, 100, 101].
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X-ray Absorption edge Energy Material Example Signal strength

type (Shells) range class material (% of ∆edge)

Soft L2,3 (2p →3d) 0.4− 1 keV Transition metal Fe 100% [102]

Soft M4,5 (2d →4f ) 0.9− 1.6 keV Rare earth Gd 50% [103]

Hard K (1s → 4p) 4.5− 9.5 keV Transition metal Fe 0.025% [98]

Hard L2,3 (2p → 5d) 5.7− 10.3 keV Rare earth Gd 8% [98]

Table 1. Comparison of the XMCD signals at different absorption edges in the hard

X-ray and soft X-ray regimes in terms of ∆edge, where ∆edge is the relative change in

absorption across the absorption edge [98]. See Table 1 of Ref. [104] for a detailed

overview including additional absorption edges.

4.2. X-ray magnetic microscopy in 2D

When considering imaging the configuration of three-dimensional magnetic structures

with X-rays, one first needs to measure a two-dimensional transmission projection of

the magnetic structure. To obtain three-dimensional information on the magnetic state,

such projections measured at different orientations of the sample can be combined

to obtain a three-dimensional image using a reconstruction algorithm or, for more

constrained systems, the projections can be considered analytically, or can be compared

with micromagnetic simulations.

There are a number of X-ray microscopy techniques that are used to provide a

transmission projection, and in this section we briefly illustrate the methods of choice

to image magnetic samples.

(i) STXM [105] and TXM [106, 35]

Transmission X-ray microscopy is a photon-in-photon-out technique, in which the

intensity of the transmission of a monochromatic X-ray beam through the sample

is spatially resolved using X-ray optics. With this technique the energy resolution

is given by the beam line monochromator, and the spatial resolution is defined by

the X-ray optics. There are two main variations of transmission X-ray microscopy:

scanning transmission X-ray microscopy (STXM) and full-field transmission X-ray

microscopy (referred to as TXM).

In STXM, illustrated in Fig. 2a, a monochromatic X-ray beam is focused to a

small spot size (on the order of tens to hundreds of nanometres) and the X-ray

intensity transmitted through the sample is monitored as a function of the position

of the focused beam on the sample [107]. The focused X-ray beam is obtained

by using Fresnel zone plates, for which the ultimate achievable spatial resolution

is determined by the width of the outermost zones of the zone plate. Spatial

resolutions obtained using Fresnel zone plates can typically reach around 25 nm,

with demonstrations of spatial resolutions of sub-10 nm achieved recently [108].

For full-field TXM, also shown in Fig. 2a, analogous to optical microscopes, the

focal spot size determines the field of view. A micro-zone plate placed after the

sample is then used to produce a magnified sample image, that is recorded by a
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X-ray sensitive 2D detector, such as a CCD camera. A spatial resolution of 15 nm

has been demonstrated [109].

(ii) X-PEEM and Shadow X-PEEM.

Another X-ray based imaging method is based on the collection of photoelectrons

ejected by the sample upon X-ray illumination: photo electron emission microscopy

(X-PEEM), illustrated in Fig. 2b. The sample is illuminated by a monochromatic

X-ray beam incident at low angles to the samples surface. For such a microscope

the spatial resolution is determined by the electron optics and it is limited by three

quantities: spherical aberration, chromatic aberration, and diffraction. In practice,

for X-ray excitation of electrons, chromatic aberrations dominate. Calculations

and experiment show that a spatial resolution of about 20-30 nm can be obtained

by X-PEEM. As a surface-sensitive technique, X-PEEM typically probes the top

5− 10 nm of material in a system, and therefore it is ideally suited to flat samples.

In recent years, however, X-PEEM has also been applied to the imaging of three-

dimensional magnetic nanostructures, where, by harnessing the low incidence-angle

of the X-rays, one images the transmission function of the structure that is projected

onto the surface behind it. Shadow X-PEEM has been used to successfully image

the magnetic structure of a number of three-dimensional magnetic nano- and micro-

structures, where the effective increase in spatial resolution due to the projection of

the structure leads to a significant advantage in identifying magnetic features (see

Section 5.1.4 for more details and references).

(iii) Lensless imaging. [110, 36]

The previously mentioned techniques, while providing substantially higher spatial

resolution than conventional optical techniques, have nevertheless failed to deliver

the diffraction limited resolution expected for X-ray wavelengths (e.g. λ ∼ 1.8 nm

at the Iron L3 edge). Such limitations, except for the case of X-PEEM, stem

from the challenges of producing efficient diffraction-limited X-ray lenses. Such

difficulties have led scientists to adapt coherence-based lensless optical microscopy

techniques, such as holography or ptychography, to the X-ray regime, as illustrated

in Figure 2c.

Lensless imaging is a set of techniques that record scattering patterns without

using lenses and recover the complex field of an object either by interfering the

scattering beam with a reference source or via phase retrieval algorithms. Several

experiments that exploit the coherence of X-ray synchrotron sources were performed

in the last years. X-ray holography, where the object transmission is interefered

with a reference point source, has been pioneered as the technique allows to obtain

an image of the sample in a single shot. Following the first demonstration of X-

ray holography of magnetic structures [111], the technique has been successfully

applied to time-resolved measurements using both synchrotron [112, 113] and free

electron laser [114] X-rays, as well as a first demonstration of non-magnetic soft

X-ray tomography [115, 116]. However, the spatial resolution of X-ray holography

is fundamentally limited by the size of the reference source, which is typically on
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the order of 20-30 nm.

Significantly higher resolutions have been achieved with coherent diffractive imaging

(CDI) techniques that do not require a reference. In particular, for ptychography,

multiple diffraction patterns are measured for overlapping illumination spots on

the sample, and the complex transmission function is then recovered with a

reconstruction algorithm. Ptychography has so far delivered the best spatial

resolutions in both the hard X-ray (14 nm in three dimensions [93]) and the soft

X-ray (5 nm in 2D [117]) regimes.

When it comes to magnetic imaging, slightly lower spatial resolutions have been

achieved due to the lower intensity of magnetic scattering compared to electronic

scattering. Both coherent diffractive imaging [118] and ptychography [119] have

been applied to magnetic imaging, with spatial resolutions of 45 nm [98] and 12 nm

[120] with hard and soft X-rays, respectively, having been recently achieved for

dichroic ptychography. It is expected that the increase in coherent flux with the

next generation of synchrotron light sources will be key to improving the sensitivity

and spatial resolutions further.

5. Three-dimensional X-ray magnetic imaging

In recent years, with growing interest in three-dimensional magnetic systems, there

have been a number of demonstrations of three-dimensional magnetic imaging, and

further proposals for experimental and reconstruction techniques. Experimentally there

are two main questions when considering X-ray magnetic tomography: that is, the

experimental geometry, which determines what part of the vector field is probed during

the measurement, and the route to determining the three-dimensional magnetisation

vector field.

In this section we will begin by discussing the different experimental geometries

available in Section 5.1, and then go on to discuss the use of reconstruction algorithms

in determining a three-dimensional vector field in Section 5.2. Along the way, we will

introduce the experimental demonstrations of recent years.

At the end of this section, after the parameters for three-dimensional imaging have

been discussed, we have included a flow chart, recommending experimental parameters

for experimental investigations of three-dimensional magnetic systems, including the

experimental geometry, and the X-ray energy suitable for different sample types. This

can be found in Figure 5.

5.1. Experimental geometries for Three-dimensional magnetic imaging

There have been four different geometries for three-dimensional magnetic imaging

proposed or demonstrated so far, each of which has different advantages and

disadvantages in terms of both data quality, and experimental feasibility. We note that

for the reconstruction of a three-dimensional vector field without a priori information,
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Figure 2. XMCD based experimental techniques to image magnetic structures

with X-rays.a) Transmission X-ray microscopy, which can take the form of full-field

transmission X-ray microscopy (TXM), where the sample is illuminated by a micro-

focused beam, and a micro-zone plate is used to produce a magnified image of the

sample, which is recorded by a 2D detector. Another variation of transmission X-ray

microscopy is Scanning transmission X-ray microscopy, where a nano-focused beam is

scanned across the sample, and the transmitted X-rays are recorded by a point (0-D)

detector (see inset). b) Photoelectron emission microscopy, and c) Coherent diffractive

imaging, where the complex transmission function is reconstructed with an algorithm,

with no need for a reference beam. For the case of ptychography, the sample is scanned

and diffraction patterns are recorded for different illumination positions on the sample.

one is limited to geometries in which all three components of the magnetisation are

probed, that include the dual-axis tomography (Section 5.1.2), effective dual-axis

tomography (Section 5.1.3) or the laminography (Section 5.1.4) geometries.

5.1.1. Tomographic geometry The first geometry is the simplest, experimental-

feasibility-wise: the standard tomographic geometry [94, 35, 106], which is shown for

the case of a free-standing sample in Figure 3a. In this geometry, the sample can be

rotated by 360◦ about a tomographic axis perpendicular to the X-ray beam. When

measuring XMCD, the magnetisation parallel to the direction of propagation of the

X-rays is probed, meaning that for a tomographic scan, the two components of the

magnetisation in the plane perpendicular to the rotation axis are measured, and the

measurement is not sensitive to the third component parallel to the rotation axis.

This geometry has been used successfully for cases in which the magnetisation is

well defined along a particular direction. Streubel et al. used soft X-ray tomographic
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imaging to determine the influence of curvature on magnetic thin films by imaging the

three-dimensional structure of magnetic microtubes, which consisted of magnetic thin

films of varying anisotropies being rolled up, as shown in Figure 4a. To determine the

magnetic structure, an algorithm was designed for hollow cylindrical samples of known

magnetic anisotropy that considered the difference in contrast between neighbouring

angular projections. In this way, the domain structure on the surface of the cylinder

could be determined for samples consisting of one and more windings, allowing for

further insight to the role of magnetostatic coupling in the formation of the magnetic

domains [35].

We note that for the case of a free-standing sample such as the cylinder shown

schematically in Figure 3a, this geometry works well. However, for a sample mounted

on a SiN4 membrane (Figure 3b), the frame of the membrane will result in shadowing of

the X-ray beam at a number of angles, thus causing a so-called “missing wedge” in the

collected data [121]. This was the case in the determination of the structure of a NdCo5

film with weak perpendicular anisotropy capped with layers of permalloy by Blanco-

Roldan et al. [106], where the thin film was mounted on an X-ray-transparent membrane

(Figure 4b). By measuring XMCD projections about a tomographic axis, as shown in

Figure 3a and fitting the angular dependence of the XMCD signal, they were able to

determine the presence of multiple in-plane and out-of-plane domains superimposed on

one another, that occur due to the canting of the magnetisation. Closer consideration

of the details of the domain structure led to the identification of topological defects

such as merons - i.e. a “half-skyrmion” - at the dislocations of the stripe domain

pattern [106]. We note that although the tomographic geometry was used to determine

the vectorial nature of the magnetisation, the magnetic structure was not mapped in

three dimensions, and so this is not an example of magnetic tomography, as defined in

Section 3.

In addition to soft X-rays, the standard single-axis tomographic geometry has also

been demonstrated with hard X-rays where, by using an adapted form of a conventional

tomographic reconstruction algorithm, Suzuki et al. were able to determine the

three-dimensional magnetic internal structure of a micrometre-sized GdFeCo disc with

uniaxial magnetic anisotropy [94]. More details of the results, and the reconstruction

algorithm used, are given in Section 5.2.1.

5.1.2. Dual-axis tomography A second geometry is the dual-axis tomographic setup

shown in Figure 3c,d and proposed by [121] et al., where magnetic tomography was

demonstrated with numerical simulations. In this case, projections are measured around

two tomographic axes at 90◦ to each other. As two components will be measured for each

rotation axis, all three components of the magnetisation are probed in a dataset, meaning

that a tomographic reconstruction of the three-dimensional magnetisation vector field is

possible, as has been demonstrated by Hierro-Rodriguez et al [121, 43] and which will be

discussed in more detail in Section 5.2.1. For the case of a free-standing sample, rotating

the sample 360◦ around both axes could be challenging due to either the sample holder
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blocking the beam at some angles, or due to an asymmetric sample such as the cylinder

shown in one direction absorbing too much for some rotations. As with the previous

geometery, when used with a sample mounted on a membrane, there will be a missing

wedge in the measured angles, which will have adverse effects on the reconstruction

[121].

5.1.3. Effective dual-axis tomography A third demonstrated geometry is an effective

dual-axis tomographic setup, demonstrated by Donnelly et al. in [36, 122] and shown

in Figure 3e, in which the sample is orientated at 0◦ and 30◦ to the rotation axis,

and all three components of the magnetisation are probed with the two tomographic

measurements. This geometry has the advantage that the issues with the previous dual-

axis setup associated with the high absorption of an asymmetric sample, and shadowing

of the beams, are easier to avoid with a standard tomographic holder and sample. This

geometry was used in the first demonstration of X-ray magnetic tomography [36] where,

using a tailored reconstruction algorithm [122], the three-dimensional internal magnetic

configuration of a micrometre-sized magnetic pillar was resolved. The reconstruction

algorithm, and the experimental results of this work will be described in the following

section.

5.1.4. 3D Shadow X-PEEM/ Laminography An alternative geometry in which the

rotation axis is not perpendicular to the direction of propagation of the X-rays, but

instead is at an angle (90 − α) to the X-ray direction, as shown in Figure 3f, is

implemented in 3D Shadow X-PEEM. For X-PEEM, this angle α is fixed to a certain

value depending on the PEEM microscope design (for the Swiss Light Source, α = 16◦).

We note here that, even with one projection, shadow X-PEEM has been useful in

determing the magnetic state of magnetic nanowires [123, 60, 124, 125, 63] and magnetic

nanotubes [59, 126, 127] due to the relatively simple configurations that occur in these

confined geometries, and due to the possibility to extract extra information: by imaging

the structure directly, and in transmission, it is possible to obtain a combination of

surface and volume information. In this way, not only has the magnetic domain structure

been determined, but the type of domain wall - Bloch point or transverse-vortex - has

been identified [60]. For the determination of three-dimensional vector fields, however,

a three-dimensional imaging technique consisting of measuring multiple projections at

different sample orientations - i.e. 3D Shadow X-PEEM - is required.

3D Shadow X-PEEM has been achieved experimentally by rotating the sample and

measuring multiple projections to obtain three-dimensional information by Streubel et

al. for the study of magnetic microtubes [35]. Again, similar to the study of microtubes

in the “standard” tomographic geometry, an algorithm that assumed hollow cylindrical

samples of a particular magnetic anisotropy was used, that considered the difference in

contrast between neighbouring angular projections, and allowed for the recovery of the

magnetic domain distribution on the surface of the tube.

A similar geometry with 0 < α < 90◦, that is combined with transmission
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Figure 3. Experimental geometries for three-dimensional magnetic imaging. a,b)

a standard tomographic geometry, shown for the case of a free-standing object (a)

(used in [35]) for which projections can be measured about 360◦, and for a SiN4

membrane (b) (used in [94]), for which case the frame of the membrane restricts the

angles over which projections can be measured, leading to a missing wedge. In the

single axis geometry, only two components of the magnetisation are measured. c,d)

a dual axis tomographic geometry for a free-standing object (c) and a membrane

(d) (proposed in [121]). The dual-axis geometry results in the measurement of all

three components of the magnetisation, and again the use of a membrane results in a

missing wedge in the acquired data. e) an effective dual-axis tomographic setup, where

a tomogram is measured for the sample in two different orientations, at 0◦ and 30◦,

(used in [36]). In this setup, all three components of the magnetisation are measured

with two tomographic measurements. f) a laminography geometry, where the rotation

axis is rotated at an angle α with respect to the beam (α = 90◦ is the tomography

geometry). For 0 < α < 90◦, all three components of the magnetisation are measured

with one rotation axis.

imaging, is known as the laminography geometry. As well as providing high spatial

resolution imaging of extended systems [128], as will be discussed in Section 6, for

certain α, in the laminography geometry all three components of the magnetisation are

probed with one axis of rotation, therefore providing the possibility to circumvent the

problems of the missing wedge associated with standard tomographic geometries. A first

demonstration of magnetic laminography, and its extension to time-resolved studies of

three-dimensional magnetisation dynamics, highlights the suitability for laminography

as a flexible alternative to more standard magnetic tomography geometries [129].
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Figure 4. Experimental demonstrations of the imaging of magnetisation vector

fields with a,b soft X-rays and c,d hard X-rays. a) (i) The magnetic configuration of

a magnetic microtube is determined in three dimensions by measuring 2D projections

of the magnetic structure at different orientations of the sample with respect to the

X-ray beam. (ii) Using an adapted algorithm, the distribution of the domains on

the three-dimensional tube was determined. b) Details of the domain structure of a

planar magnetic thin film with canted magnetisation are determined by analysing the

angular dependence of the magnetic contrast. (i) By comparing XMCD Images of the

magnetic structure at the Co and Fe edges at different angles, (ii) a dislocation core can

be identified, at which the presence of a Bloch point (B) and a Bloch-point - Meron

pair (M-B) is determined. c) The internal magnetic configuration of a micrometre-

sized GdCo pillar is determined. (i) The three-dimensional magnetic vector field is

reconstructed using a tomographic algorithm, revealing a network of topological defects

such as vortices (blue dots) and antivortices (red dot) and (ii) Bloch points . d) The

internal structure of a GdFeCo disc with strong uniaxial anisotropy is determined

using a single-axis tomographic setup. With an adapted tomographic reconstruction

algorithm, a single component of the magnetisation is reconstructed, revealing stripe

domains through the depth of the disc. Images in a) are reproduced from [35], b) from

[106], c) from [36] and d) from [94].
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5.2. Recovering the vector field: data analysis

One of the main challenges for magnetic tomography has been the reconstruction of

three-dimensional magnetic vector fields with an appropriate reconstruction algorithm.

In normal computed tomography, a single value is reconstructed for each voxel within

the structure, resulting in a well-posed problem. For magnetic tomography on the other

hand, not one, but three components of the magnetisation have to be recovered for each

voxel, which results in requirements both for the type of dataset that is measured - i.e.

that all three components of the magnetisation are probed - as well as challenges for the

reconstruction.

Indeed, XMCD projections probe the component of the magnetisation parallel to

the X-ray direction, and thus represent a longitudinal probe [130]. For a tomographic

dataset measured about a single axis of rotation (shown schematically in Figure 3a),

only the in-plane components of the vector field are measured - meaning that in order to

be obtain all three components of the magnetisation, additional information in the form

of data measured around additional tomographic axes or prior information is required.

As discussed in more detail in [122, 131], being sensitive to the components of a

vector field does not guarantee that they can be correctly reconstructed. Indeed, one

of the limitations of a longitudinal probe is that divergent structures do not give a net

signal, and thus prove difficult to measure. For a magnetic tomographic dataset about

a single rotation axis, it has been shown both mathematically [130] and with numerical

simulations [131, 122] that only the rotational part of the vector field in the plane

perpendicular to the rotation axis can be recovered. For the recovery of the divergence

of the magnetisation in the plane, additional constraints such as on the magnitude of

the magnetisation [131] or more measurements about additional axes of rotation can be

applied [122]. Higher errors in the reconstruction have been observed in the vicinity of

highly divergent structures such as Bloch points and vortex cores [122].

5.2.1. Tomographic reconstruction algorithms for a magnetisation vector field The first

demonstration of a full tomographic reconstruction of the three-dimensional vector

field was performed by Donnelly et al. using hard X-rays, where the internal three-

dimensional magnetic structure of a magnetic micropillar was mapped out, revealing

a network of topological structures including vortices, domain walls and Bloch points

[36] (Figure 4c). In that work, the effective dual-axis experimental geometry detailed

in Figure 3e was used. A “2-step” gradient-based iterative reconstruction algorithm

was used to reconstruct the two components of the magnetisation in the two planes

perpendicular to the rotation axis, and the three-dimensional magnetic structure was

then obtained by iteratively solving a set of simultaneous equations.

This reconstruction method was upgraded to a more versatile “arbitrary projection”

approach in [122], where all tomographic projections are combined to recover the

three components of the magnetisation in a single iterative reconstruction. In each

iteration, a scalar error metric is calculated by calculating the difference between the
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measured projections, and the projections of the current reconstructed object. An

analytical expression for the gradient of the error metric with respect to each variable

(i.e. the non-magnetic, and magnetic components) is used to direct the update of each

variable. These spatially resolved gradients are calculated during each iteration, thus

allowing for a more direct convergence of the reconstruction. It was shown that by

combining all projections together in a single step, this new technique provides a more

accurate reconstruction of the magnetisation with lower errors [122], and is not limited

to tomographic geometries. Using numerical simulations of magnetic tomography of

a complex micromagnetic simulated structure, the technique was demonstrated to be

robust for a variety of magnetic configurations. In particular, the reconstruction of

divergent configurations such as Bloch points was demonstrated, showing that although

divergences of the magnetisation prove challenging, a good reconstruction can still be

obtained [122]. The reconstruction algorithm is freely available at [132].

A second example of hard X-ray magnetic tomography was performed by Suzuki

et al. for the case of a magnetic material with uniaxial anisotropy. By assuming that

the magnetisation was aligned along a single direction, they were able to adapt the

filter-back projection algorithm that is commonly used for scalar tomography, and thus

reconstruct the single component of the magnetisation along the anisotropy axis. In

this way, the magnetic stripe domains within a large GdFeCo disc were imaged with

diameter 10µm and thickness 5µm with perpendicular anisotropy [94], as shown in

Figure 4d. As hard X-rays were used, the authors were able to reveal that the stripe

domains remain straight through the bulk of the material, even on a micrometre length

scale.

Recently Hierro-Rodriguez et al. have proposed an alternative iterative

tomographic reconstruction, which is based on solving a set of linear equations using

an algebraic technique [121]. In particular, for each pixel on the detector, a linear

equation is formulated which expresses the measured intensity as a function of the

three-dimensional object (including e.g. the non-magnetic, and magnetic components).

A sparse matrix combining the equations for all pixels on the detector is calculated

for each projection angle, and the three-dimensional object reconstructed iteratively

using the algebraic reconstruction technique (ART)[133]. The authors propose this

reconstruction method specifically for soft X-ray magnetic tomography, and demonstrate

the reconstruction of magnetic structures thinner than 300 nm. Interestingly, they

determine that the three-dimensional magnetic structure is still well reconstructed even

with a missing wedge in tomographic measurements, although there are associated

increases in the error of the reconstruction as well, with the reconstructed vector

components being 5 − 20% lower than the original structure. This result is very

encouraging for soft X-ray magnetic tomography, as the missing wedge (see Figure 3b)

is difficult to avoid experimentally for samples mounted on standard sample holders

such as silicon nitride membranes and Omniprobe transmission electron microscope

holders in this geometry. Recently the same authors have published an experimental

demonstration of soft X-ray magnetic tomography using the proposed dual-axis
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Figure 5. Flow chart indicating the recommended experimental parameters for

the investigation of a three-dimensional magnetic system with X-rays. In particular

the experimental geometry (left) and the X-ray energy (right) are considered. An

anisotropic magnetisation refers to one that exhibits a known preferred direction,

meaning that fewer rotation axes are needed, whilst an unconstrained magnetisation

is free to point in all directions. Experimental geometries shown are discussed in more

detail in Section 5.1 and shown more clearly in Figure 3.

geometry where the three-dimensional magnetic structure of a ferromagnetic film was

determined, revealing the three-dimensional structure of closure domains, and the

presence of meron-like singularities [43].

We note that for the reconstruction algorithms used by Donnelly et al. in [36, 122]

and by Hierro-Rodriguez et al. in [121, 43], no a priori information about the sample

or its magnetic properties is required, whilst the demonstration by Suzuki et al. [94]

assume a uniaxial magnetic anisotropy.

6. Future prospectives

With such progress in the imaging of three-dimensional magnetic systems with X-rays

in recent years, both experimentally [35, 36, 94, 43] and with the development of new,

robust reconstruction algorithms [121, 122], in the near future we expect X-ray magnetic

tomography to become a user-friendly technique available at multiple synchrotron light

sources around the world for the imaging of a large variety of magnetic systems.

As this is a new and growing field, there are a number of opportunities for significant

technical progress, which will make it possible to address a number of pressing scientific

questions, both of which we will discuss briefly in this section.
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6.1. Technical prospectives

With upcoming advances in X-ray optics and the advent of upgraded and fourth

generation synchrotrons, the coherent flux available in the hard X-ray regime can

be expected to increase by 2-3 orders of magnitude in the near future [134, 135].

This increase in coherent flux will have direct implications for coherent diffractive

imaging techniques such as dichroic ptychography, where it is the available coherent

flux that limits the achievable spatial resolution, and can be expected to bring hard

X-ray magnetic tomography down to a spatial resolution of the order of 20 nm. This

increase in coherent flux can be used not only to increase the spatial resolution, but

also to decrease measurement times. The magnetic tomography experiment presented

in [36] took around 52 hours; an increase in flux could reduce this lengthy experiment

to significantly shorter, more reasonable timescales, opening the way to performing

systematic studies involving, for example, field and temperature dependent behaviour,

within the time constraints of a synchrotron beamtime of a few days.

In addition to lensless imaging techniques such as ptychography, which have been

pioneered for magnetic tomography up until now, full-field and scanning transmission

X-ray microscopy represents a promising route for the high spatial resolution imaging

of three-dimensional magnetisation vector fields due to the high levels of non-coherent

flux available. Although the first demonstration of hard X-ray magnetic tomography

with STXM had a spatial resolution in three dimensions of approximately 300 nm using

a beam diameter of approximately 150 nm, the use of improved X-ray optics could lead

to spatial resolutions below 50 nm for both full-field [136] and scanning [137] X-ray

transmission microscopy.

Long term, as tomographic measurements become faster, four dimensional magnetic

imaging with nanoscale resolution will become realistic. For example, a time resolved

tomographic measurement could be achieved using a pump-probe measurement scheme

[138, 139, 140, 113, 112, 114] in which the sample is excited using current, magnetic

field or laser pulses. Pump-probe stroboscopic measurements with 2D magnetic X-

ray imaging are routinely used to investigate vortex dynamics [141, 142, 112], domain

wall dynamics [143], and the dynamics of Bloch points [144] as well as spin waves

[145]. In the same way, tomographic projections of the sample could be measured

at a number of delay times with respect to the exciting pulse, and thus time-

resolved tomographic reconstructions obtained. In this way, complex three-dimensional

magnetisation structures and the role of their spatial evolution and interactions in

relaxation processes could be explored, along with, for example, their interaction

with physical defects. To sufficiently explore a parameter space within a beamtime,

reasonable measurement times for a single three-dimensional image are required. For

example, for a typical beamtime of 15 shifts‡, and measuring 8-10 timesteps, an upper

limit for the scan time would be on the order of one beamtime shift per three-dimensional

image. Such scan times will require significant advances in both instrument capabilities,

‡ One shift corresponds typically to 8 hours of measurement time.
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such as the available coherent flux, and the development of a pump-probe tomography

setup.

The tomographic reconstruction techniques presented in [36, 122, 121] are not

limited to hard X-ray measurements for which the magnetic signal is very weak.

For suitably thin systems, one could directly combine the reconstruction algorithms

described in [122, 121] with high spatial resolution soft X-ray imaging that is provided by

current transmission X-ray microscopy and holographic techniques. In particular, with

single digit nanometre spatial resolution soft X-ray magnetic imaging already having

been reported with STXM [108], this combination of high spatial resolution soft X-ray

imaging with the iterative magnetic tomography reconstruction algorithm offers a route

to the determination of magnetic structures on length scales below 10 nm.

For the study of flat systems and magnetic thin films, the proposed tomographic

setup that have been demonstrated experimentally result in a “missing wedge”, meaning

that for certain tomographic angles no projections would be measured, and which leads

to a loss of accuracy in the resulting reconstruction. To avoid this problem, alternative

geometries can be considered. In particular, in laminography, where the rotation axis

is not perpendicular to the probing X-ray beam, access to all three components of

the magnetisation vector field is obtained with a single axis of rotation, and there is

no resulting missing wedge. As laminography is ideal for the study of flat and thin

samples, it is directly compatible with high spatial resolution soft X-ray imaging, and

with lithographically patterned samples on a membrane, providing a flexible setup for

in-situ and pump-probe studies [129].

6.2. Scientific

The discussed future technical advances can be expected to provide i) spatial resolutions

approaching the exchange length, ii) significantly faster measurement times, and iii)

the possibility for in-situ experiments. These future capabilities will open the door to

answering a number of scientific questions, a few of which we will summarise here.

Within curved and three-dimensional patterned magnetic nanostructures, there

are a number of open questions which three-dimensional magnetic imaging will be

useful to help answer. The majority of investigations of three-dimensional systems

has so far concerned single, isolated magnetic nanowires, and magnetic micro- and

nanotubes. As fabrication capabilities for more complex three-dimensional structures

improve [110, 32, 146, 147, 31, 34], the next steps towards exploiting the new effects

such as curvature-induced effects will involve moving to more complex geometries

and coupled systems. In more complicated systems, where new spin textures and

magnetic phenomena are predicted to occur, understanding the details of the magnetic

configuration will require three-dimensional imaging techniques as discussed in this

review. In addition, one of the most promising avenues for patterned magnetic

nanostructures is in their rich dynamics. Future developments of time-resolved three-

dimensional magnetic imaging, whether it be pump-probe or quasi-static, will be key
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to understanding the complex domain wall dynamics, both those that are predicted by

theoretical studies [58, 46, 56, 27], as well as unexpected effects such have been recently

discovered experimentally [63].

The fundamental understanding of complex magnetic textures, such as skyrmion

lattices and hopfions, will also benefit significantly from new capabilities in three-

dimensional magnetic imaging. Skyrmion lattices have been observed in several

materials by means of scattering techniques [148] or electron microscopy [149, 150, 151].

However, scattering techniques offer only an average picture of the magnetic moments

configuration in the material, while transmission electron microscopy is notoriously

limited to thin films, with the result that both sample preparation, and beam damage

during imaging, are challenging. As a result, obtaining a detailed understanding of

the magnetic structure within the bulk of a lattice has until now not been possible.

To gain a quantitative description of the role of defects both in the formation, and

the dynamical behaviour, of skyrmion lattices and the phase transitions between

skyrmionic phases [152], a technique offering high spatial resolution imaging of the

three-dimensional magnetic configuration is essential. Such techniques will be even

more relevant for the observation of higher dimensional topological magnetisation

configurations such as the hopfions, which are not predicted to occur in a periodic

arrangement, and will have an intrinsically three-dimensional magnetic structure.

As X-ray magnetic tomography approaches single digit nanometre spatial

resolution, on the order of the exchange length of many magnetic materials, a number

of routes for the investigation of fundamental magnetic systems will become possible,

such as the observation of magnetic textures in crystals with complex magnetic phase

diagrams that are characterized by incommensurate magnetic modulation and/or the

presence of strong magnetic diffuse scattering, such as TmB4 [153].

Higher spatial resolutions will also enable the non-destructive study of permanent

magnets. Researchers in this field have so far struggled to characterize their sample

due to the lack of a truly three-dimensional magnetic characterization methods. Such

materials are often characterised by thinning the samples to thicknesses on the order of

tens to hundreds of nanometres [154], which, although giving insight to the magnetic

and material properties of the sample, results in significant changes in the magnetic

configuration. By using hard X-ray three-dimensional magnetic imaging, it will be

possible to characterise samples of sizes on the order of tens of micrometres, thus greatly

reducing the requirements for sectioning, and limiting the modification of the magnetic

state.

7. Conclusions

In this text we have reviewed the state-of-the-art of magnetic nanotomography imaging

for three-dimensional magnetic systems. This young yet very promising technique will

benefit tremendously from the advent of diffraction-limited X-ray sources, and will

provide quantitative mappings, with single digit nanometre spatial resolution, of three-
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dimensional magnetic moment configurations in a wide variety of material systems,

ranging from three-dimensional nanostructures to bulk materials. At the nanoscale,

three-dimensional magnetic nanostructures promise to deliver new physics, which will

lead to breakthroughs in the next generation of devices for sensing, and manipulating

and storing information. Within larger-scale systems, bulk crystals are of great scientific

interest both for materials that are predicted to host exotic topological configurations, as

well as inductive and permanent magnets that are relevant for green energy applications.

We expect that these new capabilities for the characterisation of three-dimensional

magnetic systems will lead to many exciting discoveries in next years, that will be

relevant both for fundamental physics, but also to the development and optimisation of

sustainable technological applications in our day-to-day lives.
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[44] A. Hubert and R. Schäfer, Magnetic Domains: The Analysis of Magnetic Microstructures.

Springer, 1998.

[45] O. Fruchart, Lecture notes on Nanomagnetism.

https://archive.org/details/Olivier Fruchart Lecture notes on Nanomagnetism.

[46] M. Yan, C. Andreas, A. Kakay, F. Garcia-Sanchez, and R. Hertel, “Fast domain wall dynamics

in magnetic nanotubes: Suppression of Walker breakdown and Cherenkov-like spin wave

emission,” Applied Physics Letters, vol. 99, no. 12, p. 3, 2011.

[47] A. S. Arrott, “Visualization and interpretation of magnetic configurations using magnetic charge,”

IEEE Magnetics Letters, vol. 7, pp. 1–5, 2016.

[48] P. Sutcliffe, “Skyrmion knots in frustrated magnets,” Phys. Rev. Lett., vol. 118, p. 247203, Jun

2017.

[49] D. Makarov, M. Melzer, D. Karnaushenko, and O. G. Schmidt, “Shapeable magnetoelectronics,”

Applied Physics Reviews, vol. 3, no. 1, p. 011101, 2016.

[50] O. M. Volkov, D. D. Sheka, Y. Gaididei, V. P. Kravchuk, U. K. Rössler, J. Fassbender,
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[54] J. A. Otálora, M. Yan, H. Schultheiss, R. Hertel, and A. Kákay, “Curvature-induced asymmetric
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S. Stanescu, S. Swaraj, and et al., “7 nm spatial resolution in soft x-ray microscopy,” Microscopy

and Microanalysis, vol. 24, no. S2, p. 270271, 2018.

[109] W. Chao, P. Fischer, T. Tyliszczak, S. Rekawa, E. Anderson, and P. Naulleau, “Real space soft

x-ray imaging at 10 nm spatial resolution,” Opt. Express, vol. 20, pp. 9777–9783, Apr 2012.

[110] C. Donnelly, M. Guizar-Sicairos, V. Scagnoli, M. Holler, T. Huthwelker, A. Menzel, I. Vartiainen,

E. Müller, E. Kirk, S. Gliga, J. Raabe, and L. J. Heyderman, “Element-specific x-ray phase

tomography of 3D structures at the nanoscale,” Physical Review Letters, vol. 114, no. 11,



Imaging three-dimensional magnetic systems with X-rays 31

p. 115501, 2015.

[111] S. Eisebitt, J. Luning, W. F. Schlotter, M. Lorgen, O. Hellwig, W. Eberhardt, and J. Stohr,

“Lensless imaging of magnetic nanostructures by x-ray spectro-holography,” Nature, vol. 432,

no. 7019, pp. 885–888, 2004.

[112] N. Bukin, C. McKeever, E. Burgos-Parra, P. S. Keatley, R. J. Hicken, F. Y. Ogrin, G. Beutier,

M. Dupraz, H. Popescu, N. Jaouen, F. Yakhou-Harris, S. A. Cavill, and G. van der Laan,

“Time-resolved imaging of magnetic vortex dynamics using holography with extended reference

autocorrelation by linear differential operator,” Scientific Reports, vol. 6, OCT 31 2016.

[113] F. Buettner, C. Moutafis, M. Schneider, B. Krueger, C. M. Guenther, J. Geilhufe, C. v. K.

Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C. A. F.

Vaz, J. H. Franken, H. J. M. Swagten, M. Klaeui, and S. Eisebitt, “Dynamics and inertia

of skyrmionic spin structures,” Nature Physics, vol. 11, pp. 225–228, MAR 2015.

[114] B. Pfau, S. Schaffert, L. Mueller, C. Gutt, A. Al-Shemmary, F. Buettner, R. Delaunay,

S. Duesterer, S. Flewett, R. Froemter, J. Geilhufe, E. Guehrs, C. M. Guenther, R. Hawaldar,

M. Hille, N. Jaouen, A. Kobs, K. Li, J. Mohanty, H. Redlin, W. F. Schlotter, D. Stickler,

R. Treusch, B. Vodungbo, M. Klaeui, H. P. Oepen, J. Luening, G. Gruebel, and S. Eisebitt,

“Ultrafast optical demagnetization manipulates nanoscale spin structure in domain walls,”

NATURE COMMUNICATIONS, vol. 3, OCT 2012.
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M. Vélez, J. I. Mart́ın, J. M. Alameda, E. Pereiro, and S. Ferrer, “3D reconstruction of

magnetization from dichroic soft X-ray transmission tomography,” Journal of Synchrotron

Radiation, vol. 25, pp. 1144–1152, Jul 2018.

[122] C. Donnelly, S. Gliga, V. Scagnoli, M. Holler, J. Raabe, L. Heyderman, and M. Guizar-Sicairos,

“Tomographic reconstruction of a three-dimensional magnetization vector field,” New Journal

of Physics, vol. 20, p. 083009, 2018.
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F. Heimbach, A. Fontcuberta i Morral, D. Grundler, and M. Poggio, “Imaging magnetic vortex

configurations in ferromagnetic nanotubes,” Phys. Rev. B, vol. 96, p. 024423, Jul 2017.

[128] M. Holler, M. Odstrcil, M. Guizar-Sicairos, M. Lebugle, E. Mller, S. Finizio, G. Tinti, C. David,

J. Zusman, W. Unglaub, O. Bunk, J. Raabe, A. F. J. Levi, and G. Aeppli, “Three-dimensional

imaging of integrated circuits with macro- to nanoscale zoom,” Nature Electronics, vol. 2,

p. 464, 2019.

[129] C. Donnelly, S. Finizio, S. Gliga, M. Holler, A. Hrabec, M. Odstrčil, S. Mayr, V. Scagnoli,
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