**Supplementary Information** 

Ruthenium on phosphorus-modified alumina as effective and

stable catalyst for catalytic transfer hydrogenation of furfural

Thibault Fovanna<sup>1,2</sup>, Sebastiano Campisi<sup>3</sup>, Alberto Villa<sup>3,\*</sup>, Anastasios Kambolis<sup>1,†</sup>, Gael

Peng<sup>1,§</sup>, Daniel Rentsch<sup>4</sup>, Oliver Kröcher, <sup>1,2</sup> Maarten Nachtegaal<sup>1</sup>, Davide Ferri<sup>1\*</sup>

<sup>1</sup> Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

<sup>2</sup> École polytechnique fédérale de Lausanne (EPFL), Institute of Chemical Sciences and

Engineering, CH-1015 Lausanne, Switzerland

<sup>3</sup> Dipartimento di Chimica, Università degli Studi di Milano, I-20133 Milano, Italy

<sup>4</sup> Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse

129, CH-8600 Dübendorf, Switzerland

\*Corresponding authors.

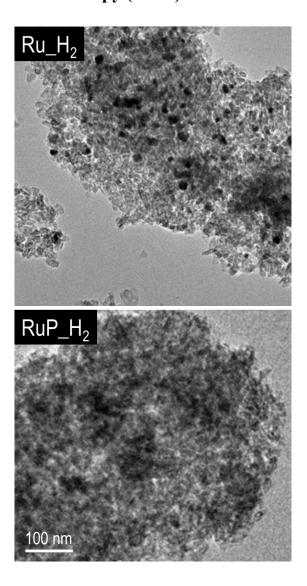
Dr. Davide Ferri

Phone: +41 (0)56 310 2781; e-mail: davide.ferri@psi.ch

Dr. Alberto Villa

Phone: +39 02 503 14361; e-mail: alberto.villa@unimi.it

† These authors contributed equally to the work.


‡ Present address: CheMa Laboratories, Xenofontos 2, GR-Korinthos 201 31, Greece

§ Present address: École polytechnique fédérale de Lausanne (EPFL), Institute of Chemical

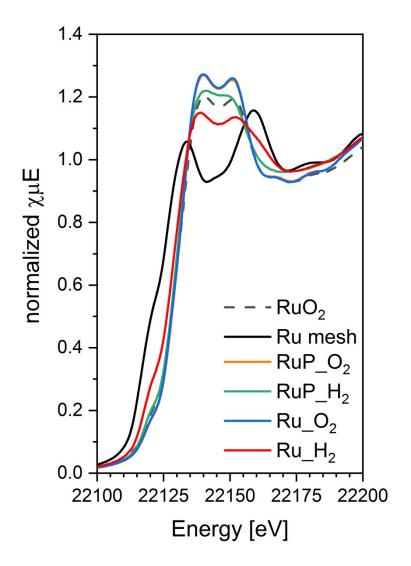
Sciences and Engineering, CH-1015 Lausanne, Switzerland

1

### Transmission electron microscopy (TEM)

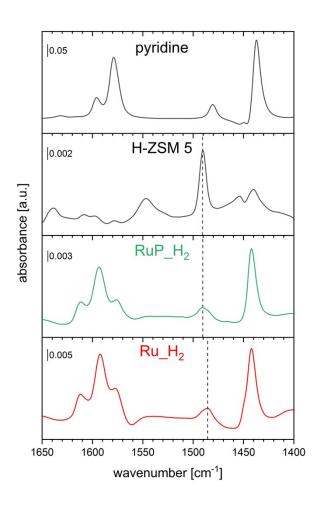


**Figure S1.** TEM micrographs of Ru\_H<sub>2</sub> and RuP\_H<sub>2</sub>. The same scale bar applies for both images.


Particles of ca. 10 nm diameter are observed in the case of  $Ru_{H_2}$ , while hardly any particle is discernible in the case of  $Ru_{H_2}$  in agreement with XRD (Figure 1 in main text) and EXAFS data (Figure 2 in main text).

# X-ray powder diffraction (XRPD)

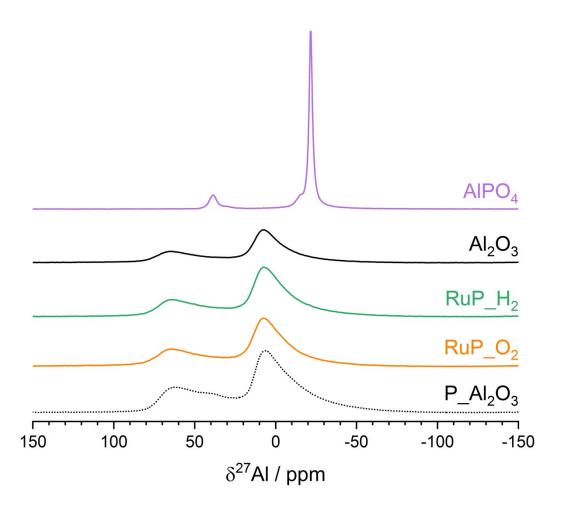
| 2θ (°) | FWHM (-) | crystallite size | Average size | Error on     |
|--------|----------|------------------|--------------|--------------|
|        |          | (nm)             | (nm)         | average (nm) |
| 38.55  | 0.7952   | 10.6             | 11.1         | ±0.6         |
| 42.30  | 0.6567   | 12.9             |              |              |
| 44.19  | 0.8160   | 10.5             |              |              |
| 58.45  | 0.8695   | 10.5             |              |              |


**Table S1.** Crystallite size of  $Ru_H_2$  was obtained using the Scherrer equation. Peak maxima and full width half maximum (FWHM) were obtained by peak fitting using Gaussian function. The four peaks were obtained by subtraction of the diffractogram of  $Al_2O_3$  from that of  $Ru_H_2$  followed by baseline correction.

## X-ray absorption near edge structure spectroscopy (XANES)



**Figure S2.** Ru K-edge XANES spectra of the various Ru catalysts and of the RuO<sub>2</sub> and Ru mesh references.


## Pyridine adsorption using infrared spectroscopy



**Figure S3.** ATR-IR spectra of pyridine adsorbed on the indicated samples and of a solution of pyridine in cyclohexane (10 mM).

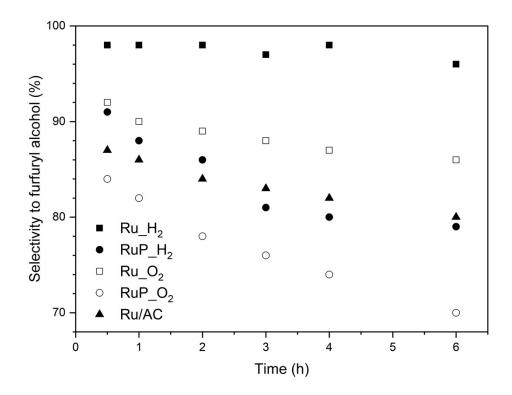
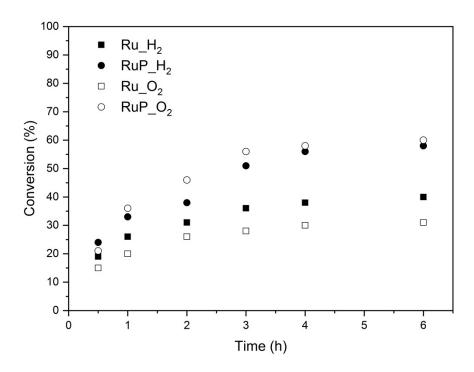
The ATR-IR spectrum of pyridine adsorbed on H-ZSM 5 displays two clear bands at 1546 and 1490 cm<sup>-1</sup> that are associated with the pyridinium ion. While molecularly adsorbed pyridine on Lewis acid sites can contribute to the latter signal, its intensity and peak shape reveal that it is predominantly due to Brønsted acid sites. The spectrum obtained on RuP\_H<sub>2</sub> exhibits the same signal (1490 cm<sup>-1</sup>) but much weaker, while the signal observed for Ru\_H<sub>2</sub> is clearly shifted to 1485 cm<sup>-1</sup> assigned to Lewis acid sites.

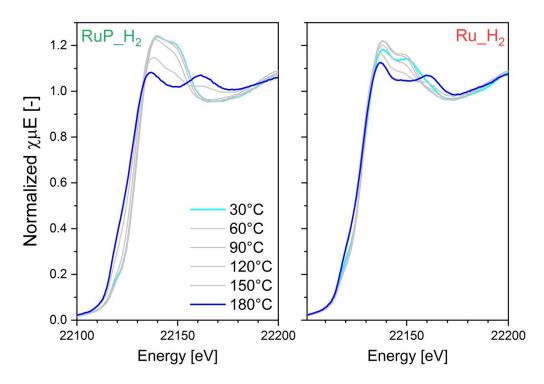
# <sup>27</sup>Al Magic angle spinning nuclear magnetic resonance (<sup>27</sup>Al MAS-NMR)



**Figure S4.** <sup>27</sup>Al MAS-NMR spectra of RuP\_H<sub>2</sub>, RuP\_O<sub>2</sub> and of reference materials.

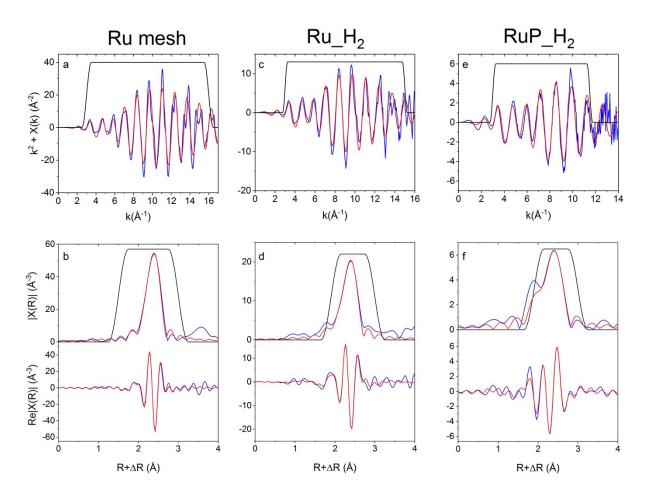
# Catalytic transfer hydrogenation of furfural without catalyst pre-reduction: selectivity towards furfuryl alcohol



Figure S5. Selectivity to furfuryl alcohol under catalytic transfer hydrogenation conditions.

# Catalytic transfer hydrogenation of furfural after in situ reduction




**Figure S6.** Conversion of furfural under catalytic transfer hydrogenation conditions. Materials were pre-reduced *in situ* before introduction of furfural in the reactor.

# **Operando XANES**



**Figure S7.** Operando Ru K-edge XANES spectra of RuP\_H<sub>2</sub> and Ru\_H<sub>2</sub> recorded during furfural hydrogenation at various temperatures.

#### Fit of FT-EXAFS spectra



**Figure S8.** Operando Ru K-edge QEXAFS spectra obtained during furfural hydrogenation in Ar-saturated 2-propanol solution at 180°C and 16 bar. Spectra are the result of averaging of 60 spectra. (a, b) Ru mesh, (c, d) Ru\_H<sub>2</sub> sample, (e, f) RuP\_H<sub>2</sub> sample. (a,c,e)  $k^2$ -weighted  $\chi(k)$ , (b,d,f) magnitude  $|\chi(R)|$  and real part Re $|\chi(R)|$  of the non-phase corrected Fourier transform spectra. Experimental data is shown in blue, fit results in red and fit window in black.